The Least Squares Estimation for the α-Stable Ornstein-Uhlenbeck Process with Constant Drift

被引:0
|
作者
Yurong Pan
Litan Yan
机构
[1] Bengbu University,School of Science, Department of Mathematics
[2] Donghua University,Department of Mathematics, College of Science
来源
Methodology and Computing in Applied Probability | 2019年 / 21卷
关键词
Least squares estimation; Ornstein-Uhlenbeck process; -stable motion; Consistency; Asymptotic distribution; 60H10; 60F15; 60G52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the least squares estimators of the Ornstein-Uhlenbeck process with a constant drift dXt=(θ1−θ2Xt)dt+dZt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dX_{t}=(\theta_{1}-\theta_{2}X_{t})dt+dZ_{t} $$\end{document}with X0 = x0, where θ1, θ2 are two unknown parameters with θ2 > 0 and Z is a strictly symmetric α-stable motion on ℝ with the index α ∈ (1, 2). We construct the least squares estimators of θ1 and θ2 based on the discrete observation, and discuss the strong consistency and asymptotic distributions of the two estimators. Finally, we give some numerical calculus and simulations.
引用
收藏
页码:1165 / 1182
页数:17
相关论文
共 50 条