Seasonal dynamics in an SIR epidemic system

被引:0
|
作者
E. Augeraud-Véron
N. Sari
机构
[1] Université de La Rochelle,Laboratoire de Mathématiques, Image et Applications (MIA)
来源
Journal of Mathematical Biology | 2014年 / 68卷
关键词
Periodic SIR epidemic model; Slow-fast system; Canard solution; Averaging; Periodic motion; 92D30; 34C15; 34C25; 34E15; 34E17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a seasonally forced SIR epidemic model where periodicity occurs in the contact rate. This periodical forcing represents successions of school terms and holidays. The epidemic dynamics are described by a switched system. Numerical studies in such a model have shown the existence of periodic solutions. First, we analytically prove the existence of an invariant domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} containing all periodic (harmonic and subharmonic) orbits. Then, using different scales in time and variables, we rewrite the SIR model as a slow-fast dynamical system and we establish the existence of a macroscopic attractor domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, included in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}, for the switched dynamics. The existence of a unique harmonic solution is also proved for any value of the magnitude of the seasonal forcing term which can be interpreted as an annual infection. Subharmonic solutions can be seen as epidemic outbreaks. Our theoretical results allow us to exhibit quantitative characteristics about epidemics, such as the maximal period between major outbreaks and maximal prevalence.
引用
收藏
页码:701 / 725
页数:24
相关论文
共 18 条
  • [1] Seasonal dynamics in an SIR epidemic system
    Augeraud-Veron, E.
    Sari, N.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 68 (03) : 701 - 725
  • [2] Periodic orbits of a seasonal SIS epidemic model with migration
    Sari, Nadir
    Augeraud-Veron, Emmanuelle
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1849 - 1866
  • [3] Dynamics of an impact-progressive system
    Luo, Guanwei
    Lv, Xiaohong
    Ma, Li
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) : 665 - 679
  • [4] Study on nonlinear dynamics characteristics of electrohydraulic servo system
    Zhu, Yong
    Jiang, Wan-Lu
    Kong, Xiang-Dong
    Zheng, Zhi
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 723 - 737
  • [5] Study on nonlinear dynamics characteristics of electrohydraulic servo system
    Yong Zhu
    Wan-Lu Jiang
    Xiang-Dong Kong
    Zhi Zheng
    Nonlinear Dynamics, 2015, 80 : 723 - 737
  • [6] Dynamics of a Multi-pulse Excited Rotating Beam System
    Song, Jie
    Si, Peng
    Hua, Hong-liang
    Wu, Zhi-lin
    Liu, Kun
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (02) : 2055 - 2065
  • [7] Dynamics of a plastic-impact system with oscillatory and progressive motions
    Luo, Guanwei
    Lv, Xiaohong
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2008, 43 (02) : 100 - 110
  • [8] Dynamics of a Multi-pulse Excited Rotating Beam System
    Jie Song
    Peng Si
    Hong-liang Hua
    Zhi-lin Wu
    Kun Liu
    Journal of Vibration Engineering & Technologies, 2024, 12 : 2055 - 2065
  • [9] Analysis of discontinuous dynamics of a 2-DOF system with constrained spring cushions
    Gao, Min
    Fan, Jinjun
    Li, Chunliang
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 128
  • [10] Experimental study on dynamics of an oblique-impact vibrating system of two degrees of freedom
    Han, W.
    Hu, H. Y.
    Jin, D. P.
    NONLINEAR DYNAMICS, 2007, 50 (03) : 551 - 573