Geochemical assessment of fluoride enrichment and nitrate contamination in groundwater in hard-rock aquifer by using graphical and statistical methods

被引:0
作者
Sunil Kumar Srivastava
A L Ramanathan
机构
[1] Jaypee University of Engineering and Technology,Department of Chemical Engineering/Chemistry
[2] Jawaharlal Nehru University,School of Environmental Science
来源
Journal of Earth System Science | 2018年 / 127卷
关键词
Hydrogeochemistry; fluoride; nitrate; Guna; hard-rock;
D O I
暂无
中图分类号
学科分类号
摘要
This systematic study was carried out with objective to delineate the various sources responsible for NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{3}^{-}$$\end{document} contamination and F-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {F}^{-}$$\end{document} enrichment by utilizing statistical and graphical methods. Since Central Ground Water Board, India, indicated susceptibility of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{3}^{-}$$\end{document} contamination and F-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {F}^{-}$$\end{document} enrichment, in most of the groundwater, NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{3}^{-}$$\end{document} and F-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {F}^{-}$$\end{document} concentration primarily observed >45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${>}45$$\end{document} and >1.5mg/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${>}1.5~\hbox {mg/L}$$\end{document}, respectively, i.e., higher than the permissible limit for drinking water. Water Quality Index (WQI) indicates ∼22.81%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }22.81\%$$\end{document} groundwater are good-water, ∼71.14%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }71.14\%$$\end{document} groundwater poor-water, ∼5.37%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }5.37\%$$\end{document} very poor-water and 0.67% unsuitable for drinking purpose. Piper diagram indicates ∼59.73%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }59.73\%$$\end{document} groundwater hydrogeochemical facies are Ca–Mg–HCO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {HCO}_{3 }$$\end{document} water-types, ∼28.19%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }28.19\%$$\end{document} Ca–Mg–SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{4}$$\end{document}–Cl water-types, ∼8.72%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }8.72\%$$\end{document} Na–K–SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{4}$$\end{document}–Cl water-types and 3.36% Na–K–HCO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {HCO}_{3 }$$\end{document} water-types. This classification indicates dissolution and mixing are mainly controlling groundwater chemistry. Salinity diagram indicate ∼44.30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }44.30\%$$\end{document} groundwater under in low sodium and medium salinity hazard, ∼49.66%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }49.66\%$$\end{document} groundwater fall under low sodium and high salinity hazard, ∼3.36%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }3.36\%$$\end{document} groundwater fall under very-high salinity hazard. Sodium adsorption ratio indicates ∼97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }97\%$$\end{document} groundwater are in excellent condition for irrigation. The spatial distribution of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{3}^{-}$$\end{document} indicates significant contribution of fertilizer from agriculture lands. Fluoride enrichment occurs in groundwater through the dissolution of fluoride-rich minerals. By reducing the consumption of fertilizer and stress over groundwater, the water quality can be improved.
引用
收藏
相关论文
共 131 条
  • [1] Agarwal R(2012)Nitrate contamination in groundwater samples of Gangapur city town (Sawai Madhopur district) Rajasthan J. Chem. Biol. Phys. Sci. 2 511-513
  • [2] Aiuppa A(2003)Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna Italy) Appl. Geochem. 18 863-882
  • [3] Bellomo S(2011)Evaluation of groundwater quality and its suitability for drinking, domestic and agriculture use in the Banan Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Environ. Geochem. Hlth. 33 559-575
  • [4] Brusca L(2014)Nitrate contamination of groundwater in two areas of the Cameroon Volcanic Line (Banan Plain and Mount Cameroon area) Appl. Water Sci. 4 99-113
  • [5] D Alessandro W(1997)Geochemistry, genesis and health implication of floriferous groundwater in the upper regions of Ghana Environ. Geol. 33 13-24
  • [6] Federico W C(2009)Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: The case of Upper Litani Basin, Lebanon Water Resour. Manag. 23 775-796
  • [7] Akao AA(1985)Geo-electrical and hydrogeochemical evaluation of coastal aquifer of Tambraarni basin, Tamilnadu Geophys. Resour. Bull. 23 203-209
  • [8] Jun S(2015)Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking uses Water Environ. Res. 87 607-617
  • [9] Takahiro H(2002)Groundwater recharge and agriculture contamination J. Hydrol. 10 153-179
  • [10] Kimpei I(1946)Genesis of groundwater in the coastal plain of Virginia Environ. Geol. 41 218-245