On the Effects of Advection and Vortex Stretching

被引:0
作者
Tarek M. Elgindi
In-Jee Jeong
机构
[1] UC San Diego,Department of Mathematics
[2] Korea Institute for Advanced Study, Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2020年 / 235卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove finite-time singularity formation for De Gregorio’s model of the three-dimensional vorticity equation in the class of Lp∩Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\cap C^\alpha (\mathbb {R})$$\end{document} vorticities for some α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} and p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. We also prove finite-time singularity formation from smooth initial data for the Okamoto–Sakajo–Wunsch models in a new range of parameter values. As a consequence, we have finite-time singularity for certain infinite-energy solutions of the surface quasi-geostrophic equation which are Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document}-regular. One of the difficulties in the models we consider is that there are competing nonlocal stabilizing effects (advection) and destabilizing effects (vortex stretching) which are of the same size in terms of scaling. Hence, it is difficult to establish the domination of one effect over the other without having strong control of the solution. We conjecture that strong solutions to the De Gregorio model exhibit the following behavior: for each 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document} there exists an initial ω0∈Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in C^\alpha (\mathbb {R})$$\end{document} which is compactly supported for which the solution becomes singular in finite-time; on the other hand, solutions to De Gregorio’s equation are global whenever ω0∈Lp∩C1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in L^p\cap C^{1}(\mathbb {R})$$\end{document} for some p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. Such a dichotomy seems to be a genuinely non-linear effect which cannot be explained merely by scaling considerations since Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document} spaces are scaling subcritical for each α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:1763 / 1817
页数:54
相关论文
共 42 条
  • [1] Baker GR(1996)Analytic structure of two 1D-transport equations with nonlocal fluxes Phys. D 91 349-375
  • [2] Li X(1984)Remarks on the breakdown of smooth solutions for the 3-D Euler equations Commun. Math. Phys. 94 61-66
  • [3] Morlet AC(2010)Infinite energy solutions of the surface quasi-geostrophic equation Adv. Math. 225 1820-1829
  • [4] Beale JT(1985)A simple one-dimensional model for the three-dimensional vorticity equation Commun. Pure Appl. Math. 38 715-724
  • [5] Kato T(1994)Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar Nonlinearity 7 1495-1533
  • [6] Majda A(1994)Singular front formation in a model for quasigeostrophic flow Phys. Fluids 6 9-11
  • [7] Castro A(2005)Formation of singularities for a transport equation with nonlocal velocity Ann. Math. (2) 162 1377-1389
  • [8] Córdoba D(1990)On a one-dimensional model for the three-dimensional vorticity equation J. Stat. Phys. 59 1251-1263
  • [9] Constantin P(1996)A partial differential equation arising in a 1D model for the 3D vorticity equation Math. Methods Appl. Sci. 19 1233-1255
  • [10] Lax PD(2017)A discrete model for nonlocal transport equations with fractional dissipation Commun. Math. Sci. 15 289-303