More results on Schur complements in Euclidean Jordan algebras

被引:1
作者
Roman Sznajder
M. Seetharama Gowda
Melania M. Moldovan
机构
[1] Bowie State University,Department of Mathematics
[2] University of Maryland,Department of Mathematics and Statistics
[3] Baltimore County,Department of Mathematics
[4] Technical University of Cluj-Napoca,undefined
来源
Journal of Global Optimization | 2012年 / 53卷
关键词
Schur complements; Euclidean Jordan algebra; Crabtree-Haynsworth quotient formula; Carlson-Markham strict diagonal dominance theorem; Schur product; Oppenheim inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent article Gowda and Sznajder (Linear Algebra Appl 432:1553–1559, 2010) studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any Schur complement of a strictly diagonally dominant element is strictly diagonally dominant. We also introduce the concept of Schur product of a real symmetric matrix and an element of a Euclidean Jordan algebra when its Peirce decomposition with respect to a Jordan frame is given. An Oppenheim type inequality is proved in this setting.
引用
收藏
页码:121 / 134
页数:13
相关论文
共 30 条
[1]  
Carlson D.(1979)Schur complements of diagonally dominant matrices Czech. Math. J. 29 246-251
[2]  
Markham T.L.(2000)The quaternionic determinant Electron. J. Linear Algebra 7 100-111
[3]  
Cohen N.(1975)On manifestations of the Schur complement Rend. Sem. Mat. Fis. Milano 45 31-40
[4]  
De Leo S.(1969)An identity for the Schur complement of a matrix Proc. Am. Math. Soc. 22 364-366
[5]  
Cottle R.W.(1998)The octonionic eigenvalue problem Adv. Appl. Clifford Algebra 8 341-364
[6]  
Crabtree D.E.(2006)Automorphism invariance of P and GUS properties of linear transformations on Euclidean Jordan algebras Math. Oper. Res. 31 109-123
[7]  
Haynsworth E.V.(2010)Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras Linear Algebra Appl. 432 1553-1559
[8]  
Dray T.(2004)Some P-properties for linear transformations on Euclidean Jordan algebras Linear Algebra Appl. 393 203-232
[9]  
Manogue C.A.(2011)The Cauchy interlacing theorem in simple Euclidean Jordan algebras and some consequences Linear Multilinear Algebra 59 65-86
[10]  
Gowda M.S.(2009)Some inertia theorems in Euclidean Jordan algebras Linear Algebra Appl. 430 1992-2011