Global optimality condition for quadratic optimization problems under data uncertainty

被引:0
作者
Moussa Barro
Ali Ouedraogo
Sado Traore
机构
[1] University Nazi Boni,Department of Mathematics
[2] Institute of Sciences,Department of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Robust optimization; Non-convex quadratic programming; Data interval uncertainty; Optimality conditions; 90C26; 90C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish a robust version of the S-lemma that we use to characterize robust solutions for classes of homogeneous and non-homogeneous quadratic problems with a quadratic inequality constraint under interval uncertainty and a linear equality constraint. Necessary and sufficient conditions of global optimality of robust solution of these problems are given.
引用
收藏
页码:1027 / 1044
页数:17
相关论文
共 44 条
[1]  
Ben-Tal A(2002)Robust optimization—methodology and applications Math. Program. Ser. B 92 453-480
[2]  
Nemirovski A(2006)Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems Math. Program. 107 63-89
[3]  
Ben-Tal A(2008)A selected topics in robust convex optimization Math. Program. Ser. B 112 125-158
[4]  
Boyd S(2009)Constructing uncertainty sets for robust linear optimization Oper. Res. 57 1483-1495
[5]  
Nemirovski A(2006)On the S-procedure and some variants Math. Methods Oper. Res. 64 55-77
[6]  
Ben-Tal A(1941)On the mapping of quadratic forms Bull. Am. Math. Soc. 47 494-498
[7]  
Nemirovski A(2007)Non-convex quadratic minimization problems with quadratic constraints: Global optimality conditions Math. Program Ser. A 110 521-541
[8]  
Bertsimas D(2009)Alternative theorems for quadratic inequality systems and global quadratic optimization SIAM J. Optim. 20 983-1001
[9]  
Brown D(2010)Characterizing robust set containments and solutions of uncertain linear programs without qualifications Oper. Res. Lett. 38 188-194
[10]  
Derinkuyu K(2011)A robust von-Neumann minimax theorem for zero-sum games under bounded payoff uncertainty Oper. Res. Lett. 39 109-114