A new discrete Hardy-type inequality with kernels and monotone functions

被引:0
作者
Aigerim Kalybay
Lars-Erik Persson
Ainur Temirkhanova
机构
[1] KIMEP University,
[2] Luleå University of Technology,undefined
[3] Narvik University College,undefined
[4] L.N. Gumilyov Eurasian National University,undefined
来源
Journal of Inequalities and Applications | / 2015卷
关键词
inequality; Hardy-type inequality; kernel; matrix operator; monotone sequence; Oinarov condition; 26D10; 26D15; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
A new discrete Hardy-type inequality with kernels and monotone functions is proved for the case 1<q<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< q< p<\infty$\end{document}. This result is discussed in a general framework and some applications related to Hölder’s summation method are pointed out.
引用
收藏
相关论文
共 18 条
[1]  
Hardy GH(1920)Notes on a theorem of Hilbert Math. Z. 6 314-317
[2]  
Hardy GH(1925)Notes on some points in the integral calculus, LX. An inequality between integrals Messenger Math. 54 150-156
[3]  
Oinarov R(2007)Boundedness and compactness of Volterra type integral operators Sib. Math. J. 48 884-896
[4]  
Oinarov R(2011)Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits Sib. Math. J. 52 1042-1055
[5]  
Sawyer E(1990)Boundedness of classical operators on classical Lorentz spaces Stud. Math. 2 145-158
[6]  
Hölder O(1882)Grenzwerthe von Reihen an der Konvergenzgrenze Math. Ann. 20 535-549
[7]  
Oinarov R(1998)Weighted Hardy inequalities on the cone of monotone sequences Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat. 1 33-42
[8]  
Shalgynbayeva S(2012)Criteria of boundedness and compactness of a class of matrix operators J. Inequal. Appl. 3 489-531
[9]  
Oinarov R(2006)Weighted Hardy inequalities for decreasing sequences and functions Math. Ann. 2 555-570
[10]  
Taspaganbetova Z(2008)Boundedness and compactness of a class of matrix operators in weighted sequence spaces J. Math. Inequal. 410 82-93