Higher Jones Algebras and their Simple Modules

被引:0
作者
Henning Haahr Andersen
机构
[1] China Three Gorges University,Three Gorges Mathematical Research Center
来源
Algebras and Representation Theory | 2020年 / 23卷
关键词
Tilting modules; Cellular algebras; Group algebras for symmetric groups; Hecke algebras; Brauer algebras; BMW-algebras; 20C20; 17B37; 20G05; 20C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected reductive algebraic group over a field of positive characteristic p and denote by T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal T$\end{document} the category of tilting modules for G. The higher Jones algebras are the endomorphism algebras of objects in the fusion quotient category of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal T$\end{document}. We determine the simple modules and their dimensions for these semisimple algebras as well as their quantized analogues. This provides a general approach for determining various classes of simple modules for many well-studied algebras such as group algebras for symmetric groups, Brauer algebras, Temperley–Lieb algebras, Hecke algebras and BMW-algebras. We treat each of these cases in some detail and give several examples.
引用
收藏
页码:393 / 419
页数:26
相关论文
共 39 条
[1]  
Andersen HH(1980)The strong linkage principle J. Reine Ang. Math. 315 53-59
[2]  
Andersen HH(1992)Tensor products of quantized tilting modules Comm. Math. Phys. 149 149-159
[3]  
Andersen HH(2003)The strong linkage principle for quantum groups at roots of 1 J. Alg. 260 2-15
[4]  
Andersen HH(2019)Simple modules for Temperley–Lieb algebras and related algebras J. Alg. 520 276-308
[5]  
Andersen HH(1995)Fusion categories arising from semisimple Lie algebras Comm. Math. Phys. 169 563-588
[6]  
Paradowski J(1991)Representations of quantum algebras Invent. Math. 104 1-59
[7]  
Andersen HH(2018)Cellular structures using Uq-tilting modules Pac. J. Math. 292 21-59
[8]  
Polo P(2017)Semisimplicity of Hecke and (walled) Brauer algebras J. Aust. Math. Soc. 103 1-44
[9]  
Kexin W(1937)On algebras which are connected with the semisimple continuous groups Ann. of Math. 38 857-872
[10]  
Andersen HH(1974)On the modular representations of the general linear and symmetric groups Math. Z. 136 193-242