Lp-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{L^p-L^q}}$$\end{document} estimates for generalized spherical averages

被引:0
作者
S Bagchi
S Hait
K S Senthil Raani
机构
[1] Indian Institute of Science Educationand Research,Department of Mathematical Sciences
[2] Indian Institute of Science,Department of Mathematics
[3] Indian Institute of Science Education and Research,Department of Mathematical Sciences
关键词
Bessel functions; generalized spherical means; sparse bounds; weights; Primary: 42B15; Secondary: 42B25; 42B37;
D O I
10.1007/s12044-022-00683-6
中图分类号
学科分类号
摘要
We study Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} improving estimates and continuity properties of maximal operators for generalized spherical means. Once these features are obtained, they are applied to get sparse bounds on lacunary and full generalized spherical averages.
引用
收藏
相关论文
共 51 条
  • [11] Thangavelu S(2016)Estimates for radial solutions to the wave equation Proc. Am. Math. Soc. 144 1543-1552
  • [12] Bernicot F(2007)Inversion of spherical means and the wave equation in even dimensions SIAM J. Appl. Math. 68 392-412
  • [13] Frey D(2004)Determining a function from its mean values over a family of spheres SIAM J. Math. Anal. 35 1213-1240
  • [14] Petermichl S(2021)On the lacunary spherical maximal function on the Heisenberg group J. Funct. Anal. 280 108832, 32-635
  • [15] Bourgain J(2019)Sparse bounds for spherical maximal functions J. Anal. Math. 139 613-1442
  • [16] Bresters DW(2003)Endpoint estimates for the circular maximal function Proc. Am. Math. Soc. 131 1433-4282
  • [17] Calderón CP(2017)On local smoothing problems and Stein’s maximal spherical means Proc. Am. Math. Soc. 145 4269-218
  • [18] Ciaurri Ó(1992)Wave front sets, local smoothing and Bourgain’s circular maximal theorem Ann. Math. 136 207-15
  • [19] Nowak A(2008)Inversion formulae for the spherical mean in odd dimensions and the Euler–Poisson–Darboux equation Inverse Probl. 24 025021, 10-492
  • [20] Roncal L(1997)Local smoothing estimates related to the circular maximal theorem Math. Res. Lett. 4 1-2175