Lp-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{L^p-L^q}}$$\end{document} estimates for generalized spherical averages

被引:0
作者
S Bagchi
S Hait
K S Senthil Raani
机构
[1] Indian Institute of Science Educationand Research,Department of Mathematical Sciences
[2] Indian Institute of Science,Department of Mathematics
[3] Indian Institute of Science Education and Research,Department of Mathematical Sciences
关键词
Bessel functions; generalized spherical means; sparse bounds; weights; Primary: 42B15; Secondary: 42B25; 42B37;
D O I
10.1007/s12044-022-00683-6
中图分类号
学科分类号
摘要
We study Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} improving estimates and continuity properties of maximal operators for generalized spherical means. Once these features are obtained, they are applied to get sparse bounds on lacunary and full generalized spherical averages.
引用
收藏
相关论文
共 51 条
  • [1] Agranovsky M(2007)Range descriptions for the spherical mean Radon transform J. Funct. Anal. 248 344-386
  • [2] Kuchment P(2021) bounds for spherical maximal operators Math. Z. 297 1057-1074
  • [3] Quinto ET(2021)On the maximal function associated to the lacunary spherical means on the Heisenberg group N. Y. J. Math. 27 631-667
  • [4] Anderson TC(2016)Sharp weighted norm estimates beyond Calderón–Zygmund theory Anal. PDE 9 1079-1113
  • [5] Hughes K(1986)Averages in the plane over convex curves and maximal operators J. Anal. Math. 47 69-85
  • [6] Roos J(1973)On the equation of Euler–Poisson–Darboux SIAM J. Math. Anal. 4 31-41
  • [7] Seeger A(1979)Lacunary spherical means Ill. J. Math. 23 476-484
  • [8] Bagchi S(2017)Two-weight mixed norm estimates for a generalized spherical mean Radon transform acting on radial functions SIAM J. Math. Anal. 49 4402-4439
  • [9] Hait S(2020)Maximal estimates for a generalized spherical mean Radon transform acting on radial functions Ann. Mat. Pura Appl. (4) 199 1597-1619
  • [10] Roncal L(2018)Sparse domination of Hilbert transforms along curves Math. Res. Lett. 25 415-436