BayesMetab: treatment of missing values in metabolomic studies using a Bayesian modeling approach

被引:0
作者
Jasmit Shah
Guy N. Brock
Jeremy Gaskins
机构
[1] The Aga Khan University,Department of Population Health
[2] The Ohio State University,Department of Biomedical Informatics
[3] University of Louisville,Department of Bioinformatics and Biostatistics
来源
BMC Bioinformatics | / 20卷
关键词
Metabolomics; Missing values; Bayesian; Truncated normal distribution; MAR; MNAR; Markov chain Monte Carlo; Data augmentation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 74 条
  • [1] McNeish D(2016)On using Bayesian methods to address small sample problems Struct Equ Model Multidiscip J 23 750-773
  • [2] Dunson DB(2001)Commentary: practical advantages of Bayesian analysis of epidemiologic data Am J Epidemiol 153 1222-1226
  • [3] Depaoli S(2017)Improving transparency and replication in Bayesian statistics: the WAMBS-checklist Psychol Methods 22 240-351
  • [4] Van de Schoot R(2015)A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes Struct Equ Model Multidiscip J 22 327-314
  • [5] Depaoli S(2016)The effect of small sample size on two-level model estimates: a review and illustration Educ Psychol Rev 28 295-722
  • [6] Clifton JP(2013)Accounting for undetected compounds in statistical analyses of mass spectrometry ‘omic studies Stat Appl Genet Mol Biol 12 703-2034
  • [7] McNeish DM(2009)A statistical framework for protein quantitation in bottom-up MS-based proteomics Bioinformatics 25 2028-540
  • [8] Stapleton LM(2012)Normalization and missing value imputation for label-free LC-MS analysis BMC bioinformatics 13 S5-306
  • [9] Taylor SL(1987)The calculation of posterior distributions by data augmentation J Am Stat Assoc 82 528-99
  • [10] Leiserowitz GS(2011)Sparse Bayesian infinite factor models Biometrika 98 291-642