Recovering an Homogeneous Polynomial from Moments of Its Level Set

被引:0
作者
Jean B. Lasserre
机构
[1] University of Toulouse LAAS,LAAS
来源
Discrete & Computational Geometry | 2013年 / 50卷
关键词
Homogeneous polynomials; Sublevel sets; Moments ; Inverse problem from moments;
D O I
暂无
中图分类号
学科分类号
摘要
Let K:=x:g(x)≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{K }:=\left\{ \mathbf{x }: g(\mathbf{x })\le 1\right\} $$\end{document} be the compact (and not necessarily convex) sub-level set of some homogeneous polynomial g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}. Assume that the only knowledge about K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{K }$$\end{document} is the degree of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} as well as the moments of the Lebesgue measure on K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{K }$$\end{document} up to order 2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2d$$\end{document}. Then the vector of coefficients of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} is the solution of a simple linear system whose associated matrix is nonsingular. In other words, the moments up to order 2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2d$$\end{document} of the Lebesgue measure on K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{K }$$\end{document} encode all information on the homogeneous polynomial g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} that defines K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{K }$$\end{document} (in fact, only moments of order d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} and 2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2d$$\end{document} are needed).
引用
收藏
页码:673 / 678
页数:5
相关论文
共 13 条
[1]  
Cuyt A.(2005)Multidimensional integral inversion, with applications in shape reconstruction SIAM J. Sci. Comput. 27 1058-1070
[2]  
Golub G.(1999)A stable numerical method for inverting shape from moments SIAM J. Sci. Comput. 21 1222-1243
[3]  
Milanfar P.(2012)The inverse moment problem for convex polytopes Discrete Comput. Geom. 48 596-621
[4]  
Verdonk B.(2010)New and old results in resultant theory Theor. Math. Phys. 163 587-undefined
[5]  
Golub G.H.(undefined)undefined undefined undefined undefined-undefined
[6]  
Milanfar P.(undefined)undefined undefined undefined undefined-undefined
[7]  
Varah J.(undefined)undefined undefined undefined undefined-undefined
[8]  
Gravin N.(undefined)undefined undefined undefined undefined-undefined
[9]  
Lasserre J.B.(undefined)undefined undefined undefined undefined-undefined
[10]  
Pasechnik D.V.(undefined)undefined undefined undefined undefined-undefined