Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

被引:0
|
作者
Sergio Albeverio
Mykola Dudkin
Volodymyr Koshmanenko
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] IZKS,undefined
[3] CERFIM,undefined
[4] Locarno and Acc. Arch. (USI),undefined
[5] National Technical Uni.,undefined
[6] Institute of Mathematics,undefined
来源
关键词
eigen-value problem; Krein's formula; rank one singular perturbation; self-adjoint extension;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the eigen-values problem for rank one singular perturbations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde A = A\tilde + \alpha \langle \cdot ,\omega \rangle \omega $$ \end{document} of a self-adjoint unbounded operator A with a gap in its spectrum. We give a constructive description of operators à which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.
引用
收藏
页码:219 / 228
页数:9
相关论文
共 50 条