Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

被引:0
|
作者
Sergio Albeverio
Mykola Dudkin
Volodymyr Koshmanenko
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] IZKS,undefined
[3] CERFIM,undefined
[4] Locarno and Acc. Arch. (USI),undefined
[5] National Technical Uni.,undefined
[6] Institute of Mathematics,undefined
来源
关键词
eigen-value problem; Krein's formula; rank one singular perturbation; self-adjoint extension;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the eigen-values problem for rank one singular perturbations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde A = A\tilde + \alpha \langle \cdot ,\omega \rangle \omega $$ \end{document} of a self-adjoint unbounded operator A with a gap in its spectrum. We give a constructive description of operators à which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.
引用
收藏
页码:219 / 228
页数:9
相关论文
共 50 条
  • [31] Rank-one perturbations and norm-attaining operators
    Mingu Jung
    Gonzalo Martínez-Cervantes
    Abraham Rueda Zoca
    Mathematische Zeitschrift, 2024, 306
  • [32] Reducing subspaces for rank-one perturbations of normal operators
    Gallardo-Gutierrez, Eva A.
    Javier Gonzalez-Dona, F.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (04) : 1391 - 1423
  • [33] Rank-one perturbations and norm-attaining operators
    Jung, Mingu
    Martinez-Cervantes, Gonzalo
    Zoca, Abraham Rueda
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [34] BEHAVIOR OF EIGENVALUES AND SINGULAR VALUES UNDER PERTURBATIONS OF RESTRICTED RANK
    THOMPSON, RC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (1-2) : 69 - 78
  • [35] Note on a rank-one modification of the singular value decomposition
    Baglama, James
    Perovic, Vasilije
    Toolan, Timothy
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 457
  • [36] A new class of rank-one transformations with singular spectrum
    El Abdalaoui, El Houcein
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1541 - 1555
  • [37] C-normality of rank-one perturbations of normal operators
    Amara, Zouheir
    Oudghiri, Mourad
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (15): : 2426 - 2440
  • [38] Rank One Perturbations of Diagonal Operators Without Eigenvalues
    Klaja, Hubert
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 429 - 445
  • [39] Rank one perturbations and singular integral operators
    Liaw, Constanze
    Treil, Sergei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (06) : 1947 - 1975
  • [40] Probabilistic μ for rank-one and perturbed rank-one matrices
    Manfay, Mate
    Balas, Gary J.
    Bokor, Jozsef
    Gerencser, Loszlo
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 2357 - 2361