Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

被引:0
|
作者
Sergio Albeverio
Mykola Dudkin
Volodymyr Koshmanenko
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] IZKS,undefined
[3] CERFIM,undefined
[4] Locarno and Acc. Arch. (USI),undefined
[5] National Technical Uni.,undefined
[6] Institute of Mathematics,undefined
来源
关键词
eigen-value problem; Krein's formula; rank one singular perturbation; self-adjoint extension;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the eigen-values problem for rank one singular perturbations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde A = A\tilde + \alpha \langle \cdot ,\omega \rangle \omega $$ \end{document} of a self-adjoint unbounded operator A with a gap in its spectrum. We give a constructive description of operators à which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.
引用
收藏
页码:219 / 228
页数:9
相关论文
共 50 条
  • [21] Gaps of operators via rank-one perturbations
    Exner, George R.
    Jung, Il Bong
    Lee, Eun Young
    Lee, Mi Ryeong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 576 - 587
  • [22] Left-Invertibility of Rank-One Perturbations
    Susmita Das
    Jaydeb Sarkar
    Complex Analysis and Operator Theory, 2022, 16
  • [23] THE INVARIANT SUBSPACE PROBLEM FOR RANK-ONE PERTURBATIONS
    Tcaciuc, Adi
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (08) : 1539 - 1550
  • [24] RANK-ONE PERTURBATIONS OF NORMAL OPERATORS AND HYPONORMALITY
    Jung, Il Bong
    Lee, Eun Young
    OPERATORS AND MATRICES, 2014, 8 (03): : 691 - 698
  • [25] On Rank-one Perturbations of Normal Operators, II
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) : 2745 - 2760
  • [26] The bounds of the eigenvalues for rank-one modification of Hermitian matrix
    Cheng, Guanghui
    Song, Zhida
    Yang, Jianfeng
    Si, Jia
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (01) : 98 - 107
  • [27] Eigenvalues of rank-one updated matrices with some applications
    Ding, Jiu
    Zhou, Aihui
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1223 - 1226
  • [28] RANK-ONE PERTURBATIONS AND ANDERSON-TYPE HAMILTONIANS
    Liaw, Constanze
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (03): : 507 - 523
  • [29] Eigenvalues of rank one perturbations of unstructured matrices
    Ran, Andre C. M.
    Wojtylak, Michal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 589 - 600
  • [30] Spectral decomposability of rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 602 - 609