eigen-value problem;
Krein's formula;
rank one singular perturbation;
self-adjoint extension;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We discuss the eigen-values problem for rank one singular perturbations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\tilde A = A\tilde + \alpha \langle \cdot ,\omega \rangle \omega $$
\end{document} of a self-adjoint unbounded operator A with a gap in its spectrum. We give a constructive description of operators à which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.
机构:
Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, IndiaIndian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
Das, Susmita
Sarkar, Jaydeb
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, IndiaIndian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India