Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

被引:0
|
作者
Sergio Albeverio
Mykola Dudkin
Volodymyr Koshmanenko
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] IZKS,undefined
[3] CERFIM,undefined
[4] Locarno and Acc. Arch. (USI),undefined
[5] National Technical Uni.,undefined
[6] Institute of Mathematics,undefined
来源
关键词
eigen-value problem; Krein's formula; rank one singular perturbation; self-adjoint extension;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the eigen-values problem for rank one singular perturbations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde A = A\tilde + \alpha \langle \cdot ,\omega \rangle \omega $$ \end{document} of a self-adjoint unbounded operator A with a gap in its spectrum. We give a constructive description of operators à which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.
引用
收藏
页码:219 / 228
页数:9
相关论文
共 50 条
  • [11] Rank-one perturbations of diagonal operators
    Ionascu, EJ
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) : 421 - 440
  • [12] RANK-ONE PERTURBATIONS AT INFINITE COUPLING
    GESZTESY, F
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) : 245 - 252
  • [13] Rank-one perturbations of diagonal operators
    Eugen J. Ionascu
    Integral Equations and Operator Theory, 2001, 39 : 421 - 440
  • [14] Rank-one perturbations of matrix pencils
    Baragana, Itziar
    Roca, Alicia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 (606) : 170 - 191
  • [15] PARAMETER-DEPENDENT RANK-ONE PERTURBATIONS OF SINGULAR HERMITIAN OR SYMMETRIC PENCILS
    Mehl, Christian
    Mehrmann, Volker
    Wojtylak, Michal
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (01) : 72 - 95
  • [16] On rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 628 - 646
  • [17] Singular rank one perturbations
    Astaburuaga, M. A.
    Cortes, V. H.
    Fernandez, C.
    Del Rio, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
  • [18] Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
    Silva, Luis O.
    Toloza, Julio H.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (09) : 1477 - 1499
  • [19] Left-Invertibility of Rank-One Perturbations
    Das, Susmita
    Sarkar, Jaydeb
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (08)
  • [20] Bounded rank-one perturbations in sampling theory
    Silva, Luis O.
    Toloza, Julio H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) : 661 - 669