Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

被引:0
|
作者
Sergio Albeverio
Mykola Dudkin
Volodymyr Koshmanenko
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] IZKS,undefined
[3] CERFIM,undefined
[4] Locarno and Acc. Arch. (USI),undefined
[5] National Technical Uni.,undefined
[6] Institute of Mathematics,undefined
来源
关键词
eigen-value problem; Krein's formula; rank one singular perturbation; self-adjoint extension;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the eigen-values problem for rank one singular perturbations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde A = A\tilde + \alpha \langle \cdot ,\omega \rangle \omega $$ \end{document} of a self-adjoint unbounded operator A with a gap in its spectrum. We give a constructive description of operators à which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.
引用
收藏
页码:219 / 228
页数:9
相关论文
共 50 条
  • [1] Rank-one singular perturbations with a dual pair of eigenvalues
    Albeverio, S
    Dudkin, MA
    Koshmanenko, V
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (03) : 219 - 228
  • [2] Eigenvalues of parametric rank-one perturbations of matrix pencils
    Gernandt, Hannes
    Trunk, Carsten
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 429 - 457
  • [3] Eigenvalues of Graph Laplacians Via Rank-One Perturbations
    Klee, Steven
    Stamps, Matthew T.
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (02): : 609 - 616
  • [4] Special rank-one perturbations
    Linear Algebra Its Appl, (171):
  • [5] Special rank-one perturbations
    Barnett, S
    Hartwig, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 : 171 - 190
  • [6] Inverse scattering problems for singular rank-one perturbations of a selfadjoint operator
    Yoshitomi, Kazushi
    ASYMPTOTIC ANALYSIS, 2012, 80 (3-4) : 213 - 221
  • [7] INVERSE SPECTRAL PROBLEMS FOR SINGULAR RANK-ONE PERTURBATIONS OF A HILL OPERATOR
    Yoshitomi, Kazushi
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (03) : 421 - 428
  • [8] THE GROUP OF EIGENVALUES OF A RANK-ONE TRANSFORMATION
    CHOKSI, JR
    NADKARNI, MG
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (01): : 42 - 54
  • [9] Resonances under rank-one perturbations
    Bourget, Olivier
    Cortes, Victor H.
    Del Rio, Rafael
    Fernandez, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [10] RANK-ONE PERTURBATIONS WITH INFINITESIMAL COUPLING
    KISELEV, A
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 345 - 356