Assessment of radiological hazards from soil samples in the Northeastern area of Burkina Faso

被引:0
作者
Cedric E. Beogo
Ousmane I. Cisse
Francois Zougmore
机构
[1] Thomas SANKARA University,Department of Physics
[2] Joseph KI-ZERBO University,Laboratory of Materials and Environment (LAME)
[3] Joseph KI-ZERBO University,undefined
来源
SN Applied Sciences | 2022年 / 4卷
关键词
Radiological anomaly; Soil samples; Natural radioactivity; Gamma-ray spectrometry;
D O I
暂无
中图分类号
学科分类号
摘要
The activity concentrations of main naturally occurring radionuclides were determined with the aim of assessing the radiation hazards in the Northeastern part of Burkina Faso. Soil samples were taken and analyzed by the gamma-ray spectrometry method. The ranges of specific activity of 238U, 232Th and40K are 15.25±2.59Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$15.25 \pm 2.59 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} to 109.57±3.21Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$109.57 \pm 3.21 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document}, 19.56±1.65Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.56 \pm 1.65 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} to 44.88±2.49Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$44.88 \pm 2.49 \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} and 125.74±4.40Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$125.74 \pm 4.40 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} to 705.85±10.79Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$705.85 \pm 10.79 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} respectively. Three high background radioactivity areas have been identified for Uranium, Thorium and Potassium on different places in the study area. The radiological hazards indices vary from 62.87Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$62.87 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} to 189.47Bq·kg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$189.47 \, \text{Bq} \cdot {\text{kg}^{-1}}$$\end{document} for the Radium equivalent activity (Raeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ra_{eq}$$\end{document}), 29.5ηGy·h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$29.5 \, \eta \text{Gy} \cdot {\text{h}^{-1}}$$\end{document} to 86.65ηGy·h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$86.65 \, \eta \text{Gy} \cdot {\text{h}^{-1}}$$\end{document} for the absorbed dose rate (DR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_R$$\end{document}), 0.18mSv·y-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.18 \, \text{mSv} \cdot {\text{y}^{-1}}$$\end{document} to 0.53mSv·y-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.53 \, \text{mSv} \cdot {\text{y}^{-1}}$$\end{document} for the annual effective dose rate (AEDE), 0.21 to 0.81 for the internal hazard index (Hin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{in}$$\end{document}), 0.17 to 0.51 for the external hazard index (Hex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{ex}$$\end{document}), 1.27×10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.27 \times 10^{-4}$$\end{document} to 3.73×10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.73 \times 10^{-4}$$\end{document} for the Excess Lifetime Cancer Risk (ELCR) and 209.01μ0.18Sv·y-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$209.01{\mkern 1mu} \mu \, 0.18{\mkern 1mu} Sv \cdot y^{{ - 1}}$$\end{document} to 594.21μSv·y-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$594.21 \, \mu \text{Sv} \cdot {\text{y}^{-1}}$$\end{document} for the annual gonadal dose equivalent. The average values of indices are well below their permissible limit. However, at Niapsi the obtained values for absorbed dose rate, annual effective dose rate and excess lifetime cancer risk are little above their permissible limit.
引用
收藏
相关论文
共 51 条
  • [1] Beogo CE(2019)Preliminary results measuring gamma dose rate distribution in North Eastern Burkina Faso where the concentration of uranium in the soil is elevated Int J Appl Nat Sci IJANS 8 1-8
  • [2] Cisse OI(2019)Preliminary study of gamma dose rate distribution in the anomaly of the west-central region of Burkina Faso: use of a portable gamma detector Int J Res Appl Sci Eng Technol 7 1101-1106
  • [3] Kanazoe AR(2015)Assessments of radioactivity concentration of natural radionuclides and radiological hazards indices in sediment samples from the East Coast Tamilnadu India Stat Approach Mar Pollut 97 419-430
  • [4] Maiga AR(2012)Gamma spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta state, Nigeria J Environ Radioactiv 109 64-70
  • [5] Zougmore F(2009)Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan Radiat Meas 44 102-110
  • [6] Beogo CE(2014)Natural radioactivity distribution of southern part of Jordan (Ma’an) soil Ann Nucl Energy 65 184-189
  • [7] Cisse OI(2007)Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments Radiat Meas 42 457-465
  • [8] Kanazoe AR(2014)Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi. South-Western Nigeria J Radiat Res Appl Sci 7 249-255
  • [9] Maiga AR(2016)Soil radioactivity levels, radiological maps and risk assessment for the state of Kowait Chemosphere 154 55-64
  • [10] Zougmore F(2002)Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium gamma ray spectrometry Appl Radiat Tsotopes 57 109-119