Prognostics Analysis of Rolling Bearing Based on Bi-Directional LSTM and Attention Mechanism

被引:0
|
作者
Maan Singh Rathore
S. P. Harsha
机构
[1] Indian Institute of Technology Roorkee,Advanced Mechanical Vibration Lab, Mechanical and Industrial Engineering Department
来源
Journal of Failure Analysis and Prevention | 2022年 / 22卷
关键词
Condition monitoring; Bi-directional LSTM; Attention mechanism; Remaining useful life; PSO technique;
D O I
暂无
中图分类号
学科分类号
摘要
Bearings as the key component of most rotating machinery, responsible for major breakdowns. Therefore, this paper addresses intelligent prognostics involving remaining useful life estimation. The proposed framework is based on a deep learning model to learn the bearing degradation from vibration responses. A comprehensive feature selection strategy involving PSO (particle swarm optimization) optimization technique and feature transformations is carried out. The sensitive prognostic features set are then input to BiLSTM (bi-directional long short-term memory) network to learn long-term time dependencies in two directions. Furthermore, the attention mechanism is integrated with BiLSTM enables selective processing of information. The experimental validation is carried out by acquiring data from a high-speed rotor supported on the bearings. The results achieved higher prediction accuracy. Also, the generalization on IEEE PHM data achieves higher RUL (remaining useful life) prediction accuracy as compared to state-of-art methods. Hence, the results proved the high performance and feasibility of the proposed RUL prognostic method.
引用
收藏
页码:704 / 723
页数:19
相关论文
共 50 条
  • [1] Prognostics Analysis of Rolling Bearing Based on Bi-Directional LSTM and Attention Mechanism
    Rathore, Maan Singh
    Harsha, S. P.
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2022, 22 (02) : 704 - 723
  • [2] Aspect Category Detection Based on Attention Mechanism and Bi-Directional LSTM
    Zhou C.
    Chen Q.
    Li Z.
    Zhao B.
    Xu Y.
    Qin Y.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2019, 37 (03): : 558 - 564
  • [3] Bi-Directional LSTM with Quantum Attention Mechanism for Sentence Modeling
    Niu, Xiaolei
    Hou, Yuexian
    Wang, Panpan
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 178 - 188
  • [4] Sentiment Analysis Based on Attention Mechanisms and Bi-directional LSTM Fusion Model
    Zhu, Yangyang
    Wang, Mei
    Liu, Shulin
    Song, Chunfeng
    Wang, Zheng
    Wang, Pai
    Qin, Xuebin
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 865 - 868
  • [5] Bi-Directional Human Pose Completion Based on RNN and Attention Mechanism
    Yang Y.
    Nie Y.
    Zhang Q.
    Li P.
    Li G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (11): : 1772 - 1783
  • [6] Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms
    Yu, Kun
    ENERGIES, 2024, 17 (15)
  • [7] Improving pix2code based Bi-directional LSTM
    Liu, Yanbin
    Hu, Qidi
    Shu, Kunxian
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 220 - 223
  • [8] Vision-Based Fall Event Detection in Complex Background Using Attention Guided Bi-Directional LSTM
    Chen, Yong
    Li, Weitong
    Wang, Lu
    Hu, Jiajia
    Ye, Mingbin
    IEEE ACCESS, 2020, 8 : 161337 - 161348
  • [9] Text Sentiment Analysis Based on Multi-Layer Bi-Directional LSTM with a Trapezoidal Structure
    He, Zhengfang
    Dumdumaya, Cristina E.
    Machica, Ivy Kim D.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01) : 639 - 654
  • [10] Attentional Bi-directional LSTM for Semantic Attribute Prediction
    Shen, Mengling
    Zhang, Xianlin
    Li, Xueming
    ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 217 - 221