Crypto-Unitary Forms of Quantum Evolution Operators

被引:0
作者
Miloslav Znojil
机构
[1] Nuclear Physics Institute ASCR,
来源
International Journal of Theoretical Physics | 2013年 / 52卷
关键词
PT-symmetric quantum mechanics; Time-dependent Schroedinger equation; Manifestly time-dependent Hermitian Hamiltonians; Manifestly time-dependent Dyson maps; Equivalent time-independent non-Hermitian Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
The description of quantum evolution using unitary operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{u}(t)=\exp(-{\rm i}\mathfrak{h}t)$\end{document} requires that the underlying self-adjoint quantum Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}$\end{document} remains time-independent. In a way extending the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric quantum mechanics to the models with manifestly time-dependent “charge” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}(t)$\end{document} we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}(t)$\end{document}.
引用
收藏
页码:2038 / 2045
页数:7
相关论文
empty
未找到相关数据