Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case 0<q<1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1\le p<\infty $$\end{document}

被引:0
作者
Martin Křepela
机构
[1] Karlstad University,Department of Mathematics and Computer Science, Faculty of Health, Science and Technology
[2] Charles University,Department of Mathematical Analysis, Faculty of Mathematics and Physics
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; 47G10; 26D15;
D O I
10.1007/s13163-017-0230-9
中图分类号
学科分类号
摘要
Let 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p <\infty $$\end{document} and 0<q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<p$$\end{document}. We prove necessary and sufficient conditions under which the weighted inequality ∫0∞∫0tf(x)U(x,t)dxqw(t)dt1q≤C∫0∞fp(t)v(t)dt1p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( \int _0^\infty \left( \int _0^t f(x)U(x,t)\mathrm {\,d}x\right) ^q w(t) \mathrm {\,d}t\right) ^\frac{1}{q}\le C \left( \int _0^\infty f^p(t)v(t)\mathrm {\,d}t\right) ^\frac{1}{p}, \end{aligned}$$\end{document}where U is a so-called ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document}-regular kernel, holds for all nonnegative measurable functions f on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document}. The conditions have an explicit integral form. Analogous results for the case p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document} and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:40
相关论文
共 24 条
[1]  
Bloom S(1991)Weighted norm inequalities for operators of Hardy type Proc. Am. Math. Soc. 113 135-141
[2]  
Kerman R(2007)A reduction theorem for supremum operators J. Comput. Appl. Math. 208 270-279
[3]  
Gogatishvili A(2013)Reduction theorems for operators on the cones of monotone functions J. Math. Anal. Appl. 405 156-172
[4]  
Pick L(2013)Reduction theorems for weighted integral inequalities on the cone of monotone functions Russ. Math. Surv. 68 597-664
[5]  
Gogatishvili A(1996)On the principle of duality in Lorentz spaces Can. J. Math. 48 959-979
[6]  
Stepanov VD(2014)Convolution inequalities in weighted Lorentz spaces Math. Inequal. Appl. 17 1201-1223
[7]  
Gogatishvili A(2017)Integral conditions for Hardy-type operators involving suprema Collect. Math. 68 21-50
[8]  
Stepanov VD(1999)Weighted modular inequalities for Hardy type operators Proc. Lond. Math. Soc. 79 649-672
[9]  
Goldman ML(2000)Weighted inequality for some classical integral operators: 0 Math. Inequal. Appl. 3 253-258
[10]  
Heinig HP(1989) 1 Proc. Am. Math. Soc. 106 727-733