Derivations and linear functions along rational functions

被引:0
作者
Eszter Gselmann
机构
[1] University of Debrecen,Institute of Mathematics
来源
Monatshefte für Mathematik | 2013年 / 169卷
关键词
Derivation; Linear function; Polynomial function; Primary 39B82; Secondary 39B72;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to give characterization theorems on derivations as well as on linear functions. Among others the following problem will be investigated: Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \mathbb{Z}, f, g\colon\mathbb{R} \to\mathbb{R}}$$\end{document} be additive functions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left(\begin{array}{cc} a&b\\ c&d \end{array} \right) \in \mathbf{GL}_{2}(\mathbb{Q})}$$\end{document} be arbitrarily fixed, and let us assume that the mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi(x)=g\left(\frac{ax^{n}+b}{cx^{n}+d}\right)-\frac{x^{n-1}f(x)}{(cx^{n}+d)^{2}} \quad \left(x\in\mathbb{R}, cx^{n}+d\neq 0\right)$$\end{document}satisfies some regularity on its domain (e.g. (locally) boundedness, continuity, measurability). Is it true that in this case the above functions can be represented as a sum of a derivation and a linear function? Analogous statements ensuring linearity will also be presented.
引用
收藏
页码:355 / 370
页数:15
相关论文
共 17 条
  • [1] Boros Z.(2010)Hyers–Ulam stability of derivations and linear functions Aequationes Math. 80 13-25
  • [2] Gselmann E.(1999)Additive functions commuting with Möbius transformations and field monomorphisms Aequationes Math. 58 176-182
  • [3] Halter-Koch F.(2000)Characterization of field homomorphisms by functional equations Publ. Math. Debrecen 56 179-183
  • [4] Reich L.(2000)Characterization of field homomorphisms and derivations by functional equations Aequationes Math. 59 298-305
  • [5] Halter-Koch F.(2000)A characterization of derivations by functional equations Math. Pannon. 11 187-190
  • [6] Reich L.(2001)Characterization of field homomorphisms by functional equations II Aequationes Math. 62 184-191
  • [7] Halter-Koch F.(1965)On Cauchy’s functional equation Proc. Amer. Math. Soc. 16 683-686
  • [8] Halter-Koch F.(1970)Some relations between additive functions. I Aequationes Math 4 163-175
  • [9] Halter-Koch F.(1964)The Cauchy functional equation and scalar product in vector spaces Glasnik Mat.-Fiz. Astronom. Ser. II 19 23-36
  • [10] Reich L.(1968)On a system of functional equations Aequationes Math. 1 1-5