A new equation related to two-sided centralizers in prime rings

被引:0
|
作者
Maja Fošner
Benjamin Marcen
机构
[1] University of Maribor,Faculty of Logistics
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Ring; Prime ring; Semiprime ring; Derivation; Jordan derivation; Jordan triple derivation; Left (right) centralizer; Left (right) Jordan centralizer; Two-sided centralizer; Functional equation; Functional identity; 16N60; 16W25; 39B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the following result: Let R be a prime ring with char(R)≠2,3,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$char(R)\ne 2,3,5$$\end{document} and let T:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:R\rightarrow R$$\end{document} be an additive mapping satisfying the relation T(x4)=xT(x2)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T(x^{4})=xT(x^2)x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}. In this case T is of the form T(x)=λx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(x)=\lambda x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} and some fixed element λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in C$$\end{document}, where C is the extended centroid of R.
引用
收藏
页码:1207 / 1219
页数:12
相关论文
共 50 条
  • [21] ON FUNCTIONAL EQUATION RELATED TO (m, n)-JORDAN TRIPLE CENTRALIZERS
    Ulbl, Irena Kosi
    MATHEMATICAL REPORTS, 2017, 19 (02): : 183 - 195
  • [22] Weak right η-centralizers of prime rings
    Siddeeque, Mohammad Aslam
    Khan, Nazim
    Abdullah, Ali Ahmed
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2024, 18 (01):
  • [23] ON CENTRALIZERS OF PRIME RINGS WITH INVOLUTION
    Ali, S.
    Dar, N. A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (06) : 1465 - 1475
  • [24] On some functional equation arising from (m, n)-Jordan derivations of prime rings
    Fosner, Maja
    Marcen, Benjamin
    Vukman, Joso
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 133 - 146
  • [25] Jordan left *-centralizers of prime and semiprime rings with involution
    Ali S.
    Dar N.A.
    Vukman J.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 609 - 624
  • [26] A two-sided fractional conservation of mass equation
    Olsen, Jeffrey S.
    Mortensen, Jeff
    Telyakovskiy, Aleksey S.
    ADVANCES IN WATER RESOURCES, 2016, 91 : 117 - 121
  • [27] A note on Jordan left *-centralizers on prime and semiprime rings with involution
    El-Sayiad, M. S. Tammam
    Muthana, N. M.
    Alkhamisi, Z. S.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2017, 11 (06): : 1080 - 1082
  • [28] EQUATIONS RELATED TO DERIVATIONS ON PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    GLASNIK MATEMATICKI, 2011, 46 (01) : 31 - 41
  • [29] Centralizers of generalized derivations on multilinear polynomials in prime rings
    Carini, L.
    De Filippis, V.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 1051 - 1060
  • [30] Centralizers of generalized derivations on multilinear polynomials in prime rings
    L. Carini
    V. De Filippis
    Siberian Mathematical Journal, 2012, 53 : 1051 - 1060