Simple random walk on long range percolation clusters I: heat kernel bounds

被引:0
作者
Nicholas Crawford
Allan Sly
机构
[1] The Technion,Department of Industrial Engineering
[2] Theory Group,undefined
[3] Microsoft Research,undefined
来源
Probability Theory and Related Fields | 2012年 / 154卷
关键词
60FXX; 82B43; 05C81; 74QXX;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive upper bounds for the heat kernel of the simple random walk on the infinite cluster of a supercritical long range percolation process. For any d ≥ 1 and for any exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \in (d, (d+2) \wedge 2d)}$$\end{document} giving the rate of decay of the percolation process, we show that the return probability decays like \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t^{-{d}/_{s-d}}}$$\end{document} up to logarithmic corrections, where t denotes the time the walk is run. Our methods also yield generalized bounds on the spectral gap of the dynamics and on the diameter of the largest component in a box. The bounds and accompanying understanding of the geometry of the cluster play a crucial role in the companion paper (Crawford and Sly in Simple randomwalk on long range percolation clusters II: scaling limit, 2010) where we establish the scaling limit of the random walk to be α-stable Lévy motion.
引用
收藏
页码:753 / 786
页数:33
相关论文
共 42 条
[1]  
Aizenman M.(1986)Discontinuity of the percolation density in one dimensional Commun. Math. Phys. 107 611-3084
[2]  
Newman C.(2004) percolation models Ann. Probab. 32 3024-111
[3]  
Barlow M.T.(2001)Random walks on supercritical percolation clusters Random Struct. Algorithms 19 102-494
[4]  
Benjamini I.(2008)The diameter of long-range percolation clusters on finite cycles Combin. Probab. Comput. 17 487-558
[5]  
Berger N.(2002)Long-range percolation mixing time Commun. Math. Phys. 226 531-120
[6]  
Benjamini I.(2007)Transience, recurrence and critical behavior for long-range percolation Probab. Theory Relat. Fields 137 83-2977
[7]  
Berger N.(2004)Quenched invariance principle for simple random walk on percolation clusters Ann. Probab. 32 2938-505
[8]  
Yadin A.(1989)On the scaling of the chemical distance in long-range percolation models Commun. Math. Phys. 121 501-701
[9]  
Berger N.(1998)Density and uniqueness in percolation Geom. Funct. Anal. 8 656-232
[10]  
Berger N.(1999)Random walks on graphs with regular volume growth Revista Matematica Iberoamericana 15 181-86