Approximating the Degree-Bounded Minimum Diameter Spanning Tree Problem

被引:0
作者
Jochen Könemann
Asaf Levin
Amitabh Sinha
机构
[1] Department of Combinatorics and Optimization,
[2] University of Waterloo,undefined
[3] 200 University Avenue West,undefined
[4] Waterloo,undefined
[5] Ontario,undefined
[6] N2L 3G1,undefined
[7] Faculty of Industrial Engineering and Management,undefined
[8] The Technion,undefined
[9] Haifa 32000,undefined
[10] Business School,undefined
[11] University of Michigan,undefined
[12] Ann Arbor,undefined
[13] MI 48103,undefined
来源
Algorithmica | 2005年 / 41卷
关键词
Approximation algorithms; Spanning trees; Bicriteria approximation; Degree-bounded spanning trees;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding a minimum diameter spanning tree with maximum node degree $B$ in a complete undirected edge-weighted graph. We provide an $O(\sqrt{\log_Bn})$-approximation algorithm for the problem. Our algorithm is purely combinatorial, and relies on a combination of filtering and divide and conquer.
引用
收藏
页码:117 / 129
页数:12
相关论文
共 50 条
  • [31] Euclidean Bottleneck Bounded-Degree Spanning Tree Ratios
    Ahmad Biniaz
    Discrete & Computational Geometry, 2022, 67 : 311 - 327
  • [32] Bounded-degree minimum-radius spanning trees in wireless sensor networks
    An, Min Kyung
    Lam, Nhat X.
    Huynh, Dung T.
    Nguyen, Trac N.
    THEORETICAL COMPUTER SCIENCE, 2013, 498 : 46 - 57
  • [33] The label-constrained minimum spanning tree problem
    Xiong, Yupei
    Golden, Bruce
    Wasil, Edward
    Chen, Si
    TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY, 2008, : 39 - +
  • [34] AN EXACT METHOD FOR SOLVING THE BI-OBJECTIVE MINIMUM DIAMETER-COST SPANNING TREE PROBLEM
    De Sousa, Ernando Gomes
    Santos, Andrea Cynthia
    Aloise, Dario Jose
    RAIRO-OPERATIONS RESEARCH, 2015, 49 (01) : 143 - 160
  • [35] Scatter search for the minimum leaf spanning tree problem
    Kardam, Yogita Singh
    Srivastava, Kamal
    Jain, Pallavi
    Marti, Rafael
    COMPUTERS & OPERATIONS RESEARCH, 2022, 145
  • [36] Bounded-degree spanning tree problems: models and new algorithms
    Cerulli, R.
    Gentili, M.
    Iossa, A.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 42 (03) : 353 - 370
  • [37] Bounded-degree spanning tree problems: models and new algorithms
    R. Cerulli
    M. Gentili
    A. Iossa
    Computational Optimization and Applications, 2009, 42 : 353 - 370
  • [38] ADDITIVE GUARANTEES FOR DEGREE-BOUNDED DIRECTED NETWORK DESIGN
    Bansal, Nikhil
    Khandekar, Rohit
    Nagarajan, Viswanath
    SIAM JOURNAL ON COMPUTING, 2009, 39 (04) : 1413 - 1431
  • [39] The Stackelberg Minimum Spanning Tree Game
    Jean Cardinal
    Erik D. Demaine
    Samuel Fiorini
    Gwenaël Joret
    Stefan Langerman
    Ilan Newman
    Oren Weimann
    Algorithmica, 2011, 59 : 129 - 144
  • [40] The Stackelberg Minimum Spanning Tree Game
    Cardinal, Jean
    Demaine, Erik D.
    Fiorini, Samuel
    Joret, Gwenael
    Langerman, Stefan
    Newman, Ilan
    Weimann, Oren
    ALGORITHMICA, 2011, 59 (02) : 129 - 144