Approximating the Degree-Bounded Minimum Diameter Spanning Tree Problem

被引:0
|
作者
Jochen Könemann
Asaf Levin
Amitabh Sinha
机构
[1] Department of Combinatorics and Optimization,
[2] University of Waterloo,undefined
[3] 200 University Avenue West,undefined
[4] Waterloo,undefined
[5] Ontario,undefined
[6] N2L 3G1,undefined
[7] Faculty of Industrial Engineering and Management,undefined
[8] The Technion,undefined
[9] Haifa 32000,undefined
[10] Business School,undefined
[11] University of Michigan,undefined
[12] Ann Arbor,undefined
[13] MI 48103,undefined
来源
Algorithmica | 2005年 / 41卷
关键词
Approximation algorithms; Spanning trees; Bicriteria approximation; Degree-bounded spanning trees;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding a minimum diameter spanning tree with maximum node degree $B$ in a complete undirected edge-weighted graph. We provide an $O(\sqrt{\log_Bn})$-approximation algorithm for the problem. Our algorithm is purely combinatorial, and relies on a combination of filtering and divide and conquer.
引用
收藏
页码:117 / 129
页数:12
相关论文
共 50 条
  • [21] The first approximated distributed algorithm for the Minimum Degree Spanning Tree problem on general graphs
    Blin, L
    Butelle, F
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2004, 15 (03) : 507 - 516
  • [22] Minimum Spanning Tree Cycle Intersection problem
    Dubinsky, Manuel
    Massri, Cesar
    Taubin, Gabriel
    DISCRETE APPLIED MATHEMATICS, 2021, 294 : 152 - 166
  • [23] The Minimum-Area Spanning Tree problem
    Carmi, Paz
    Katz, Matthew J.
    Mitchell, Joseph S. B.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2006, 35 (03): : 218 - 225
  • [24] On the complexity of the bilevel minimum spanning tree problem
    Buchheim, Christoph
    Henke, Dorothee
    Hommelsheim, Felix
    NETWORKS, 2022, 80 (03) : 338 - 355
  • [25] Fast reoptimization for the minimum spanning tree problem
    Boria, Nicolas
    Paschos, Vangelis Th.
    JOURNAL OF DISCRETE ALGORITHMS, 2010, 8 (03) : 296 - 310
  • [26] Approximating the minimum weight spanning tree of a set of points in the Hausdorff metric
    Alvarez, Victor
    Seidel, Raimund
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (02): : 94 - 98
  • [27] APPROXIMATING MINIMUM-COST GRAPH PROBLEMS WITH SPANNING TREE EDGES
    GOEMANS, MX
    WILLIAMSON, DP
    OPERATIONS RESEARCH LETTERS, 1994, 16 (04) : 183 - 189
  • [28] Modeling and solving the bi-objective minimum diameter-cost spanning tree problem
    Andréa Cynthia Santos
    Diego Rocha Lima
    Dario José Aloise
    Journal of Global Optimization, 2014, 60 : 195 - 216
  • [29] Modeling and solving the bi-objective minimum diameter-cost spanning tree problem
    Santos, Andrea Cynthia
    Lima, Diego Rocha
    Aloise, Dario Jose
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (02) : 195 - 216
  • [30] Euclidean Bottleneck Bounded-Degree Spanning Tree Ratios
    Biniaz, Ahmad
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 311 - 327