Approximating the Degree-Bounded Minimum Diameter Spanning Tree Problem

被引:0
|
作者
Jochen Könemann
Asaf Levin
Amitabh Sinha
机构
[1] Department of Combinatorics and Optimization,
[2] University of Waterloo,undefined
[3] 200 University Avenue West,undefined
[4] Waterloo,undefined
[5] Ontario,undefined
[6] N2L 3G1,undefined
[7] Faculty of Industrial Engineering and Management,undefined
[8] The Technion,undefined
[9] Haifa 32000,undefined
[10] Business School,undefined
[11] University of Michigan,undefined
[12] Ann Arbor,undefined
[13] MI 48103,undefined
来源
Algorithmica | 2005年 / 41卷
关键词
Approximation algorithms; Spanning trees; Bicriteria approximation; Degree-bounded spanning trees;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding a minimum diameter spanning tree with maximum node degree $B$ in a complete undirected edge-weighted graph. We provide an $O(\sqrt{\log_Bn})$-approximation algorithm for the problem. Our algorithm is purely combinatorial, and relies on a combination of filtering and divide and conquer.
引用
收藏
页码:117 / 129
页数:12
相关论文
共 50 条
  • [11] Approximating the minimum spanning tree weight in sublinear time
    Chazelle, B
    Rubinfeld, R
    Trevisan, L
    SIAM JOURNAL ON COMPUTING, 2005, 34 (06) : 1370 - 1379
  • [12] Approximating average bounded-angle minimum spanning trees
    Biniaz, Ahmad
    Bose, Prosenjit
    Devaney, Patrick
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2025, 128
  • [13] Local search for the minimum label spanning tree problem with bounded color classes
    Brüggemann, T
    Monnot, J
    Woeginger, GJ
    OPERATIONS RESEARCH LETTERS, 2003, 31 (03) : 195 - 201
  • [14] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [15] The Minimum Moving Spanning Tree Problem
    Akitaya, Hugo A.
    Biniaz, Ahmad
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Maheshwari, Anil
    da Silveira, Luis Fernando Schultz Xavier
    Smid, Michiel
    ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 15 - 28
  • [16] When Diameter Matters: Parameterized Approximation Algorithms for Bounded Diameter Minimum Steiner Tree Problem
    Ali Mashreghi
    Alireza Zarei
    Theory of Computing Systems, 2016, 58 : 287 - 303
  • [17] When Diameter Matters: Parameterized Approximation Algorithms for Bounded Diameter Minimum Steiner Tree Problem
    Mashreghi, Ali
    Zarei, Alireza
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 287 - 303
  • [18] A distributed algorithm for constructing a minimum diameter spanning tree
    Bui, M
    Butelle, F
    Lavault, C
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2004, 64 (05) : 571 - 577
  • [19] Approximating bounded-degree spanning trees and connected factors with leaves
    Kern, Walter
    Manthey, Bodo
    OPERATIONS RESEARCH LETTERS, 2017, 45 (02) : 115 - 118
  • [20] The Euclidean Degree-4 Minimum Spanning Tree Problem is NP-hard
    Francke, Andrea
    Hoffmann, Michael
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 179 - 188