Deep learning to convert unstructured CT pulmonary angiography reports into structured reports

被引:0
|
作者
Adam Spandorfer
Cody Branch
Puneet Sharma
Pooyan Sahbaee
U. Joseph Schoepf
James G. Ravenel
John W. Nance
机构
[1] Medical University of South Carolina,Department of Radiology
[2] Siemens Medical Solutions USA,undefined
[3] Inc.,undefined
来源
European Radiology Experimental | / 3卷
关键词
Artificial intelligence; Machine learning; Natural language processing; Structured reporting; Tomography (x-ray, computed);
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Deep Learning Versus Iterative Reconstruction for CT Pulmonary Angiography in the Emergency Setting: Improved Image Quality and Reduced Radiation Dose
    Lenfant, Marc
    Chevallier, Olivier
    Comby, Pierre-Olivier
    Secco, Gregory
    Haioun, Karim
    Ricolfi, Frederic
    Lemogne, Brivael
    Loffroy, Romaric
    DIAGNOSTICS, 2020, 10 (08)
  • [42] Deep learning-based image restoration algorithm for coronary CT angiography
    Tatsugami, Fuminari
    Higaki, Toru
    Nakamura, Yuko
    Yu, Zhou
    Zhou, Jian
    Lu, Yujie
    Fujioka, Chikako
    Kitagawa, Toshiro
    Kihara, Yasuki
    Iida, Makoto
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2019, 29 (10) : 5322 - 5329
  • [43] Motion artefact reduction in coronary CT angiography images with a deep learning method
    Ren, Pengling
    He, Yi
    Zhu, Yi
    Zhang, Tingting
    Cao, Jiaxin
    Wang, Zhenchang
    Yang, Zhenghan
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [44] Motion artefact reduction in coronary CT angiography images with a deep learning method
    Pengling Ren
    Yi He
    Yi Zhu
    Tingting Zhang
    Jiaxin Cao
    Zhenchang Wang
    Zhenghan Yang
    BMC Medical Imaging, 22
  • [45] Evaluation of a deep learning model on coronary CT angiography for automatic stenosis detection
    Paul, Jean-Francois
    Rohnean, Adela
    Giroussens, Henri
    Pressat-Laffouilhere, Thibaut
    Wong, Tatiana
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2022, 103 (06) : 316 - 323
  • [46] Detection of Incidental Pulmonary Embolism on Conventional Contrast-Enhanced Chest CT: Comparison of an Artificial Intelligence Algorithm and Clinical Reports
    Batra, Kiran
    Xi, Yin
    Al-Hreish, Khaled M.
    Kay, Fernando U.
    Browning, Travis
    Baker, Chris
    Peshock, Ronald M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 219 (06) : 895 - 902
  • [47] FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images
    Gerard, Sarah E.
    Patton, Taylor J.
    Christensen, Gary E.
    Bayouth, John E.
    Reinhardt, Joseph M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 156 - 166
  • [48] Diagnostic performance of deep learning to exclude coronary stenosis on CT angiography in TAVI patients
    Mehier, Benjamin
    Mahmoudi, Khalil
    Veugeois, Aurelie
    Masri, Alaa
    Amabile, Nicolas
    Del Giudice, Costantino
    Paul, Jean-Francois
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (5) : 981 - 990
  • [49] Using Text Content From Coronary Catheterization Reports to Predict 5-Year Mortality Among Patients Undergoing Coronary Angiography: A Deep Learning Approach
    Li, Yu-Hsuan
    Lee, I-Te
    Chen, Yu-Wei
    Lin, Yow-Kuan
    Liu, Yu-Hsin
    Lai, Fei-Pei
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [50] Deep learning-based defacing tool for CT angiography: CTA-DEFACE
    Mahmutoglu, Mustafa Ahmed
    Rastogi, Aditya
    Schell, Marianne
    Foltyn-Dumitru, Martha
    Baumgartner, Michael
    Maier-Hein, Klaus Hermann
    Deike-Hofmann, Katerina
    Radbruch, Alexander
    Bendszus, Martin
    Brugnara, Gianluca
    Vollmuth, Philipp
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)