On the list decodability of rank-metric codes containing Gabidulin codes

被引:0
作者
Paolo Santonastaso
Ferdinando Zullo
机构
[1] Università degli Studi della Campania “Luigi Vanvitelli”,Dipartimento di Matematica e Fisica
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Rank-metric code; List decoding; Linearized polynomial; Gabidulin code; 94B35; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Wachter-Zeh (IEEE Trans Inf Theory 59(11):7268–7276, 2013), and later together with Raviv (IEEE Trans Inf Theory 62(4):1605–1615, 2016), proved that Gabidulin codes cannot be efficiently list decoded for any radius τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, providing that τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is large enough. Also, they proved that there are infinitely many choices of the parameters for which Gabidulin codes cannot be efficiently list decoded at all. Subsequently, in Trombetti and Zullo (IEEE Trans Inf Theory 66(9):5379–5386, 2020) these results have been extended to the family of generalized Gabidulin codes and to further family of MRD-codes. In this paper, we provide bounds on the list size of rank-metric codes containing generalized Gabidulin codes in order to determine whether or not a polynomial-time list decoding algorithm exists. We detect several families of rank-metric codes containing a generalized Gabidulin code as subcode which cannot be efficiently list decoded for any radius large enough and families of rank-metric codes which cannot be efficiently list decoded. These results suggest that rank-metric codes which are Fqm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^m}$$\end{document}-linear or that contains a (power of) generalized Gabidulin code cannot be efficiently list decoded for large values of the radius.
引用
收藏
页码:957 / 982
页数:25
相关论文
共 50 条
[41]   On kernels and nuclei of rank metric codes [J].
Lunardon, Guglielmo ;
Trombetti, Rocco ;
Zhou, Yue .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (02) :313-340
[42]   Rank metric codes and zeta functions [J].
I. Blanco-Chacón ;
E. Byrne ;
I. Duursma ;
J. Sheekey .
Designs, Codes and Cryptography, 2018, 86 :1767-1792
[43]   On kernels and nuclei of rank metric codes [J].
Guglielmo Lunardon ;
Rocco Trombetti ;
Yue Zhou .
Journal of Algebraic Combinatorics, 2017, 46 :313-340
[44]   Some Gabidulin Codes cannot be List Decoded Efficiently at any Radius [J].
Raviv, Netanel ;
Wachter-Zeh, Antonia .
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, :6-10
[45]   On the number of inequivalent Gabidulin codes [J].
Schmidt, Kai-Uwe ;
Zhou, Yue .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (09) :1973-1982
[46]   Constructions of optimal Ferrers diagram rank metric codes [J].
Zhang, Tao ;
Ge, Gennian .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (01) :107-121
[47]   Constructions of optimal Ferrers diagram rank metric codes [J].
Tao Zhang ;
Gennian Ge .
Designs, Codes and Cryptography, 2019, 87 :107-121
[48]   Partially scattered linearized polynomials and rank metric codes [J].
Longobardi, Giovanni ;
Zanella, Corrado .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76
[49]   LIGA: a cryptosystem based on the hardness of rank-metric list and interleaved decoding [J].
Julian Renner ;
Sven Puchinger ;
Antonia Wachter-Zeh .
Designs, Codes and Cryptography, 2021, 89 :1279-1319
[50]   On the number of inequivalent Gabidulin codes [J].
Kai-Uwe Schmidt ;
Yue Zhou .
Designs, Codes and Cryptography, 2018, 86 :1973-1982