On the list decodability of rank-metric codes containing Gabidulin codes

被引:0
|
作者
Paolo Santonastaso
Ferdinando Zullo
机构
[1] Università degli Studi della Campania “Luigi Vanvitelli”,Dipartimento di Matematica e Fisica
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Rank-metric code; List decoding; Linearized polynomial; Gabidulin code; 94B35; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Wachter-Zeh (IEEE Trans Inf Theory 59(11):7268–7276, 2013), and later together with Raviv (IEEE Trans Inf Theory 62(4):1605–1615, 2016), proved that Gabidulin codes cannot be efficiently list decoded for any radius τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, providing that τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is large enough. Also, they proved that there are infinitely many choices of the parameters for which Gabidulin codes cannot be efficiently list decoded at all. Subsequently, in Trombetti and Zullo (IEEE Trans Inf Theory 66(9):5379–5386, 2020) these results have been extended to the family of generalized Gabidulin codes and to further family of MRD-codes. In this paper, we provide bounds on the list size of rank-metric codes containing generalized Gabidulin codes in order to determine whether or not a polynomial-time list decoding algorithm exists. We detect several families of rank-metric codes containing a generalized Gabidulin code as subcode which cannot be efficiently list decoded for any radius large enough and families of rank-metric codes which cannot be efficiently list decoded. These results suggest that rank-metric codes which are Fqm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^m}$$\end{document}-linear or that contains a (power of) generalized Gabidulin code cannot be efficiently list decoded for large values of the radius.
引用
收藏
页码:957 / 982
页数:25
相关论文
共 50 条
  • [1] On the list decodability of rank-metric codes containing Gabidulin codes
    Santonastaso, Paolo
    Zullo, Ferdinando
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (04) : 957 - 982
  • [2] On the list decodability of self-orthogonal rank-metric codes
    Liu, Shu
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 273 - 287
  • [3] On the List Decodability of Rank Metric Codes
    Trombetti, Rocco
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5379 - 5386
  • [4] List Decodability of Random Subcodes of Gabidulin Codes
    Liu, Shu
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (01) : 159 - 163
  • [5] On List-Decodability of Random Rank Metric Codes and Subspace Codes
    Ding, Yang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 51 - 59
  • [6] Bounds on List Decoding of Rank-Metric Codes
    Wachter-Zeh, Antonia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7268 - 7277
  • [7] On maximum additive Hermitian rank-metric codes
    Trombetti, Rocco
    Zullo, Ferdinando
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (01) : 151 - 171
  • [8] On maximum additive Hermitian rank-metric codes
    Rocco Trombetti
    Ferdinando Zullo
    Journal of Algebraic Combinatorics, 2021, 54 : 151 - 171
  • [9] Optimal Ferrers diagram rank-metric codes from MRD codes
    Shuangqing Liu
    Designs, Codes and Cryptography, 2023, 91 : 3977 - 3993
  • [10] Optimal Ferrers diagram rank-metric codes from MRD codes
    Liu, Shuangqing
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (12) : 3977 - 3993