SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb{R})}$$\end{document} -invariant probability measures on the moduli spaces of translation surfaces are regular

被引:0
|
作者
Artur Avila
Carlos Matheus
Jean-Christophe Yoccoz
机构
[1] CNRS UMR 7586,
[2] Institut de Mathématiques de Jussieu - Paris Rive Gauche,undefined
[3] IMPA,undefined
[4] Université Paris 13,undefined
[5] Sorbonne Paris Cité,undefined
[6] CNRS (UMR 7539),undefined
[7] Collège de France (PSL),undefined
关键词
Modulus Space; Lyapunov Exponent; Invariant Measure; Haar Measure; Polish Space;
D O I
10.1007/s00039-013-0244-5
中图分类号
学科分类号
摘要
In the moduli space Hg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}_g}$$\end{document} of normalized translation surfaces of genus g, consider, for a small parameter ρ > 0, those translation surfaces which have two non-parallel saddle-connections of length ⩽ ρ. We prove that this subset of Hg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}_g}$$\end{document} has measure o(ρ2) w.r.t. any probability measure on Hg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}_g}$$\end{document} which is invariant under the natural action of SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2,\mathbb{R})}$$\end{document} . This implies that any such probability measure is regular, a property which is important in relation with the recent fundamental work of Eskin–Kontsevich–Zorich on the Lyapunov exponents of the KZ-cocycle.
引用
收藏
页码:1705 / 1729
页数:24
相关论文
共 50 条