Distributive extensions of modules

被引:0
作者
Tuganbaev A.A. [1 ]
机构
[1] Moscow Power Engineering Institute (Technological University),
关键词
Commutative Ring; Simple Module; Cardinal Number; Cyclic Module; Isomorphic Copy;
D O I
10.1007/s10958-008-0065-5
中图分类号
学科分类号
摘要
Let X be a submodule of a module M. The extension X M is said to be distributive if X (Y + Z) = X Y + X Z for any two submodules Y and Z of M. We study distributive extensions of modules over not necessarily commutative rings. In particular, it is proved that the following three conditions are equivalent: (1) XA MA is a distributive extension; (2) for any submodule Y of the module M, no simple subfactor of the module X/(X Y ) is isomorphic to any simple subfactor of Y/(X Y) (3) for any two elements x X and m M, there does not exist a simple factor module of the cyclic module xA/(X mA) that is isomorphic to a simple factor module of the cyclic module mA/(X mA). © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:1279 / 1285
页数:6
相关论文
共 7 条
[1]  
Barnard A., Distributive extensions of modules, J. Algebra, 70, pp. 303-315, (1981)
[2]  
Davison T.M.K., Distributive homomorphisms of rings and modules, J. Reine Angew Math., 271, pp. 28-34, (1974)
[3]  
Erdogdu V., Modules with locally linearly ordered distributive hulls, J. Pure Appl. Algebra, 47, pp. 119-130, (1987)
[4]  
Erdogdu V., The distributive hull of a ring, J. Algebra, 132, pp. 263-269, (1990)
[5]  
Grater J., Über die Distributivität des Idealverbandes eines kommutativen Ringes, Monatsh. Math., 99, pp. 267-278, (1985)
[6]  
Jensen C.U., A remark on the distributive law for an ideal in a commutative ring, Proc. Glasgow Math. Assoc., 7, pp. 193-198, (1966)
[7]  
Knebusch M., Zhang D., Lect. Notes Math., 1791, (2002)