Embeddings of Rearrangement Invariant Spaces that are not Strictly Singular

被引:0
作者
S. J. Montgomery-Smith
E. M. Semenov
机构
[1] University of Missouri,Department of Mathematics
[2] Voronezh State University,Department of Mathematics
来源
Positivity | 2000年 / 4卷
关键词
rearrangement invariant space; strictly singular mapping; Rademacher function; Orlicz space;
D O I
暂无
中图分类号
学科分类号
摘要
We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L1([0,1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space LΦ with Φ(x) = exp(x2)-1.
引用
收藏
页码:397 / 402
页数:5
相关论文
共 6 条
  • [1] Kalton N.J.(1984)Representations of Operators between Function Spaces Indiana U. Math. J. 33 639-665
  • [2] Montgomery-Smith S.J.(1998)Random rearrangements and operators 25 Years of Voronezh Winter Mathematical School, Proceedings in honor of 80th birthday of S. Krein 184 157-183
  • [3] Semenov E.M.(1997)Rademacher series in symmetric spaces Singularities of the embedding operator for symmetric function spaces on [0, 1] 62 549-563
  • [4] Novikov S.J.(1975)undefined Anal. Math. 1 207-222
  • [5] Rodin S.J.(undefined)undefined undefined undefined undefined-undefined
  • [6] Semenov E.M.(undefined)undefined undefined undefined undefined-undefined