Linear quantile regression models for longitudinal experiments: An overview

被引:31
|
作者
Marino M.F. [1 ]
Farcomeni A. [2 ]
机构
[1] University of Perugia, Perugia
[2] Sapienza, University of Rome, Rome
关键词
Conditional models; Fixed effects; Generalized estimating equations; Longitudinal data; Marginal models; Quantile regression; Random effects;
D O I
10.1007/s40300-015-0072-5
中图分类号
学科分类号
摘要
We provide an overview of linear quantile regression models for continuous responses repeatedly measured over time. We distinguish between marginal approaches, that explicitly model the data association structure, and conditional approaches, that consider individual-specific parameters to describe dependence among data and overdispersion. General estimation schemes are discussed and available software options are listed. We also mention methods to deal with non-ignorable missing values, with spatially dependent observations and nonparametric and semiparametric models. The paper is concluded by an overview of open issues in longitudinal quantile regression. © 2015 Sapienza Università di Roma.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 50 条
  • [41] Bayesian analysis of penalized quantile regression for longitudinal data
    A. Aghamohammadi
    S. Mohammadi
    Statistical Papers, 2017, 58 : 1035 - 1053
  • [42] A Bayesian variable selection approach to longitudinal quantile regression
    Kedia, Priya
    Kundu, Damitri
    Das, Kiranmoy
    STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 149 - 168
  • [43] A joint quantile regression model for multiple longitudinal outcomes
    Hemant Kulkarni
    Jayabrata Biswas
    Kiranmoy Das
    AStA Advances in Statistical Analysis, 2019, 103 : 453 - 473
  • [44] Quantile regression of longitudinal data with informative observation times
    Chen, Xuerong
    Tang, Niansheng
    Zhou, Yong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 144 : 176 - 188
  • [45] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [46] Quantile regression in linear mixed models: a stochastic approximation EM approach
    Galarza, Christian E.
    Lachos, Victor H.
    Bandyopadhyay, Dipankar
    STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 471 - 482
  • [47] Quantile regression for partially linear varying coefficient spatial autoregressive models
    Dai, Xiaowen
    Li, Shaoyang
    Jin, Libin
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4396 - 4411
  • [48] Smoothed quantile regression for partially functional linear models in high dimensions
    Wang, Zhihao
    Bai, Yongxin
    Haerdle, Wolfgang K.
    Tian, Maozai
    BIOMETRICAL JOURNAL, 2023, 65 (07)
  • [49] Penalized weighted smoothed quantile regression for high-dimensional longitudinal data
    Song, Yanan
    Han, Haohui
    Fu, Liya
    Wang, Ting
    STATISTICS IN MEDICINE, 2024, 43 (10) : 2007 - 2042
  • [50] Quantile regression in heteroscedastic varying coefficient models
    Y. Andriyana
    I. Gijbels
    AStA Advances in Statistical Analysis, 2017, 101 : 151 - 176