Linear quantile regression models for longitudinal experiments: An overview

被引:31
|
作者
Marino M.F. [1 ]
Farcomeni A. [2 ]
机构
[1] University of Perugia, Perugia
[2] Sapienza, University of Rome, Rome
关键词
Conditional models; Fixed effects; Generalized estimating equations; Longitudinal data; Marginal models; Quantile regression; Random effects;
D O I
10.1007/s40300-015-0072-5
中图分类号
学科分类号
摘要
We provide an overview of linear quantile regression models for continuous responses repeatedly measured over time. We distinguish between marginal approaches, that explicitly model the data association structure, and conditional approaches, that consider individual-specific parameters to describe dependence among data and overdispersion. General estimation schemes are discussed and available software options are listed. We also mention methods to deal with non-ignorable missing values, with spatially dependent observations and nonparametric and semiparametric models. The paper is concluded by an overview of open issues in longitudinal quantile regression. © 2015 Sapienza Università di Roma.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 50 条
  • [31] Robust and smoothing variable selection for quantile regression models with longitudinal data
    Fu, Z. C.
    Fu, L. Y.
    Song, Y. N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2600 - 2624
  • [32] Imputation based statistical inference for partially linear quantile regression models with missing responses
    Zhao, Peixin
    Tang, Xinrong
    METRIKA, 2016, 79 (08) : 991 - 1009
  • [33] Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors
    Tian, Yuzhu
    Shen, Silian
    Lu, Ge
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 777 - 796
  • [34] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    STATISTICS, 2017, 51 (06) : 1342 - 1358
  • [35] Bayesian weighted composite quantile regression estimation for linear regression models with autoregressive errors
    Aghamohammadi, A.
    Bahmani, M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (08) : 2888 - 2907
  • [36] Efficient quantile marginal regression for longitudinal data with dropouts
    Cho, Hyunkeun
    Hong, Hyokyoung Grace
    Kim, Mi-Ok
    BIOSTATISTICS, 2016, 17 (03) : 561 - 575
  • [37] A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA
    Mu, Yunming
    Wei, Ying
    STATISTICA SINICA, 2009, 19 (03) : 1137 - 1153
  • [38] A joint quantile regression model for multiple longitudinal outcomes
    Kulkarni, Hemant
    Biswas, Jayabrata
    Das, Kiranmoy
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (04) : 453 - 473
  • [39] COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA
    Wang, Huixia Judy
    Feng, Xingdong
    Dong, Chen
    STATISTICA SINICA, 2019, 29 (01) : 245 - 264
  • [40] A Bayesian variable selection approach to longitudinal quantile regression
    Priya Kedia
    Damitri Kundu
    Kiranmoy Das
    Statistical Methods & Applications, 2023, 32 : 149 - 168