Higher-dimensional inhomogeneous perfect fluid collapse in f(R) gravity

被引:0
|
作者
G. Abbas
M. S. Khan
Zahid Ahmad
M. Zubair
机构
[1] The Islamia University of Bahawalpur,Department of Mathematics
[2] COMSATS Institute of Information Technology,Department of Mathematics
[3] COMSATS Institute of Information Technology,Department of Mathematics
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper is about the n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+2$$\end{document}-dimensional gravitational contraction of an inhomogeneous fluid without heat flux in the framework of a f(R) metric theory of gravity. Matching conditions for two regions of a star are derived by using the Darmois junction conditions. For the analytic solution of the equations of motion in modified f(R) theory of gravity, we have taken the scalar curvature constant. Hence the final result of gravitational collapse in this framework is the existence of black hole and cosmological horizons, and both of these form earlier than the singularity. It is shown that a constant curvature term f(R0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R_{0})$$\end{document} (R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} is the constant scalar curvature) slows down the collapsing process.
引用
收藏
相关论文
共 50 条
  • [41] Astrophysical implications of higher-dimensional gravity
    Liko, T
    Overduin, JM
    Wesson, PS
    SPACE SCIENCE REVIEWS, 2004, 110 (3-4) : 337 - 357
  • [42] Astrophysical implications of higher-dimensional gravity
    Tomáš Liko
    James M. Overduin
    Paul S. Wesson
    Space Science Reviews, 2004, 110 : 337 - 357
  • [43] ELECTROMAGNETIC SOLUTIONS OF HIGHER-DIMENSIONAL GRAVITY
    LORENZPETZOLD, D
    ASTROPHYSICS AND SPACE SCIENCE, 1989, 151 (02) : 349 - 352
  • [44] Empty Singularities in Higher-Dimensional Gravity
    Gamboa Saravi, Ricardo E.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (10) : 3062 - 3072
  • [45] Hydrostatic equilibrium of a perfect fluid sphere with exterior higher-dimensional Schwarzschild spacetime
    de Leon, JP
    Cruz, N
    GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (07) : 1207 - 1216
  • [46] Black Holes in Higher-Dimensional Gravity
    Obers, N. A.
    PHYSICS OF BLACK HOLES: A GUIDED TOUR, 2009, 769 : 211 - 258
  • [47] Gravitational collapse of dissipative fluid in f(R, G) gravity
    Shah, Hassan
    Khan, Suhail
    Lu, Dianchen
    Ahmad, Zahid
    Hussain, Sardar Muhmmad
    Shah, Hasrat Hussain
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (23):
  • [48] MASSIVE STRINGS IN HIGHER-DIMENSIONAL INHOMOGENEOUS SPACETIME
    CHATTERJEE, S
    GENERAL RELATIVITY AND GRAVITATION, 1993, 25 (10) : 1079 - 1087
  • [49] Conformal and traversable wormholes with monopole and perfect fluid in f(R)-gravity
    Taser, Dogukan
    Dogru, Melis Ulu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (02):
  • [50] Decaying dark energy in higher-dimensional gravity
    Overduin, J. M.
    Wesson, P. S.
    Mashhoon, B.
    ASTRONOMY & ASTROPHYSICS, 2007, 473 (03): : 727 - 731