Ballistic two-dimensional InSe transistors

被引:0
作者
Jianfeng Jiang
Lin Xu
Chenguang Qiu
Lian-Mao Peng
机构
[1] Peking University,Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon
来源
Nature | 2023年 / 616卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The International Roadmap for Devices and Systems (IRDS) forecasts that, for silicon-based metal–oxide–semiconductor (MOS) field-effect transistors (FETs), the scaling of the gate length will stop at 12 nm and the ultimate supply voltage will not decrease to less than 0.6 V (ref. 1). This defines the final integration density and power consumption at the end of the scaling process for silicon-based chips. In recent years, two-dimensional (2D) layered semiconductors with atom-scale thicknesses have been explored as potential channel materials to support further miniaturization and integrated electronics. However, so far, no 2D semiconductor-based FETs have exhibited performances that can surpass state-of-the-art silicon FETs. Here we report a FET with 2D indium selenide (InSe) with high thermal velocity as channel material that operates at 0.5 V and achieves record high transconductance of 6 mS μm−1 and a room-temperature ballistic ratio in the saturation region of 83%, surpassing those of any reported silicon FETs. An yttrium-doping-induced phase-transition method is developed for making ohmic contacts with InSe and the InSe FET is scaled down to 10 nm in channel length. Our InSe FETs can effectively suppress short-channel effects with a low subthreshold swing (SS) of 75 mV per decade and drain-induced barrier lowering (DIBL) of 22 mV V−1. Furthermore, low contact resistance of 62 Ω μm is reliably extracted in 10-nm ballistic InSe FETs, leading to a smaller intrinsic delay and much lower energy-delay product (EDP) than the predicted silicon limit.
引用
收藏
页码:470 / 475
页数:5
相关论文
共 50 条
[31]   Atomically thin InSe: A high mobility two-dimensional material [J].
Wei Feng ;
Wei Zheng ;
Feng Gao ;
PingAn Hu .
Science China Technological Sciences, 2017, 60 :1121-1122
[32]   Electron-electron interactions in the two-dimensional semiconductor InSe [J].
Kumar, Arvind Shankar ;
Premasiri, Kasun ;
Gao, Min ;
Kumar, U. Rajesh ;
Sankar, Raman ;
Chou, Fang-Cheng ;
Gao, Xuan P. A. .
PHYSICAL REVIEW B, 2020, 102 (12)
[33]   Solution-Processed Two-Dimensional Ultrathin InSe Nanosheets [J].
Lauth, Jannika ;
Gorris, Friederieke E. S. ;
Khoshkhoo, Mandi Samadi ;
Chasse, Thomas ;
Friedrich, Wiebke ;
Lebedeya, Vera ;
Meyer, Andreas ;
Klinke, Christian ;
Komowsld, Andreas ;
Scheele, Marcus ;
Weller, Horst .
CHEMISTRY OF MATERIALS, 2016, 28 (06) :1728-1736
[34]   Effect of single vacancy defects on two-dimensional δ-InSe stability [J].
Miao Rui-Xia ;
Wang Ye-Fei ;
Xie Miao-Chun ;
Zhang De-Dong .
ACTA PHYSICA SINICA, 2024, 73 (04)
[35]   Elastic properties and intrinsic strength of two-dimensional InSe flakes [J].
Li, Yuhao ;
Yu, Chuanbin ;
Gan, Yingye ;
Kong, Yangyang ;
Jiang, Peng ;
Zou, Dai-Feng ;
Li, Penghui ;
Yu, Xue-Feng ;
Wu, Rong ;
Zhao, Huijuan ;
Gao, Cun-Fa ;
Li, Jiangyu .
NANOTECHNOLOGY, 2019, 30 (33)
[36]   Two-Dimensional InSe Artificial Synapses with fJ Energy Consumption [J].
Xu, Ningyu ;
Duan, Mengyuan ;
Zhang, Kun ;
Zhang, Weifeng ;
Jia, Caihong .
ACS APPLIED ENERGY MATERIALS, 2025, 8 (10) :6300-6307
[37]   Room-Temperature Two-Dimensional InSe Plasmonic Laser [J].
Li, Chenyang ;
Wang, Qifa ;
Yi, Ruixuan ;
Zhang, Xutao ;
Gan, Xuetao ;
Liu, Kaihui ;
Zhao, Jianlin ;
Xiao, Fajun .
NANO LETTERS, 2024, 24 (41) :12935-12941
[38]   Atomically thin InSe: A high mobility two-dimensional material [J].
FENG Wei ;
ZHENG Wei ;
GAO Feng ;
HU PingAn .
Science China(Technological Sciences), 2017, 60 (07) :1121-1122
[39]   Atomically thin InSe: A high mobility two-dimensional material [J].
FENG Wei ;
ZHENG Wei ;
GAO Feng ;
HU PingAn .
Science China(Technological Sciences), 2017, (07) :1121-1122
[40]   Tunable spin-orbit coupling in two-dimensional InSe [J].
Ceferino, A. ;
Magorrian, S. J. ;
Zolyomi, V ;
Bandurin, D. A. ;
Geim, A. K. ;
Patane, A. ;
Kovalyuk, Z. D. ;
Kudrynskyi, Z. R. ;
Grigorieva, I., V ;
Fal'ko, V., I .
PHYSICAL REVIEW B, 2021, 104 (12)