On Λ −ϕ generalized synchronization of chaotic dynamical systems in continuous–time

被引:0
作者
A. Ouannas
M.M. Al-sawalha
机构
[1] Tebessa University,Department of Mathematics and Computer Science
[2] Mathematics Department,undefined
[3] Faculty of Science,undefined
[4] University of Hail,undefined
来源
The European Physical Journal Special Topics | 2016年 / 225卷
关键词
Chaotic System; European Physical Journal Special Topic; Lorenz System; Negative Real Part; Slave System;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new type of chaos synchronization in continuous-time is proposed by combining inverse matrix projective synchronization (IMPS) and generalized synchronization (GS). This new chaos synchronization type allows us to study synchronization between different dimensional continuous-time chaotic systems in different dimensions. Based on stability property of integer-order linear continuous-time dynamical systems and Lyapunov stability theory, effective control schemes are introduced and new synchronization criterions are derived. Numerical simulations are used to validate the theoretical results and to verify the effectiveness of the proposed schemes.
引用
收藏
页码:187 / 196
页数:9
相关论文
共 68 条
  • [1] Warminski J.(2014)undefined Eur. Phys. J. Special Topics 223 827-undefined
  • [2] Szmit Z.(2014)undefined Eur. Phys. J. Special Topics 223 773-undefined
  • [3] Latalski J.(2014)undefined Eur. Phys. J. Special Topics 223 729-undefined
  • [4] Fradkov A.L.(2014)undefined Eur. Phys. J. Special Topics 223 757-undefined
  • [5] Andrievsky B.(2014)undefined Eur. Phys. J. Special Topics 223 687-undefined
  • [6] Ananyevskiy M.(2014)undefined Eur. Phys. J. Special Topics 223 665-undefined
  • [7] Fradkov A.L.(2013)undefined Eur. Phys. J. Special Topics 222 729-undefined
  • [8] Andrievsky B.(2013)undefined Discrete Dynam. Nat. Soc. 2013 7-undefined
  • [9] Ananyevskiy M.(2014)undefined J. Franklin I. 351 4584-undefined
  • [10] Marcheggiani L.(2007)undefined Solitons Fractals 32 773-undefined