Composition series in groups and the structure of slim semimodular lattices

被引:0
|
作者
Gábor Czédli
E. Tamás Schmidt
机构
[1] University of Szeged,
[2] Bolyai Institute,undefined
[3] Mathematical Institute of the Budapest University of Technology and Economics,undefined
来源
Acta Scientiarum Mathematicarum | 2013年 / 79卷 / 3-4期
关键词
composition series; Jordan-Hölder Theorem; group; slim lattice; semimodularity; planar lattice; permutation; 06C10; 20E15;
D O I
10.1007/BF03651325
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document} be finite composition series of a group G. The intersections Hi ∩ Kj of their members form a lattice CSL(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}) under set inclusion. Improving the Jordan-Hölder theorem, G. Grätzer, J. B. Nation and the present authors have recently shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document} determine a unique permutation π such that, for all i, the i-th factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}is “down-and-up projective”to the π(i)-th factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}. Equivalent definitions of π were earlier given by R. P. Stanley and H. Abels. We prove that π determines the lattice CSL(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}). More generally, we describe slim semimodular lattices, up to isomorphism, by permutations, up to an equivalence relation called “sectionally inverted or equal”. As a consequence, we prove that the abstract class of all CSL(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}) coincides with the class of duals of all slim semimodular lattices.
引用
收藏
页码:369 / 390
页数:21
相关论文
共 50 条
  • [21] Slim Semimodular Lattices. I. A Visual Approach
    Czedli, Gabor
    Schmidt, E. Tamas
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (03): : 481 - 497
  • [22] Slim Semimodular Lattices. II. A Description by Patchwork Systems
    Gábor Czédli
    E. Tamás Schmidt
    Order, 2013, 30 : 689 - 721
  • [23] Slim Semimodular Lattices. II. A Description by Patchwork Systems
    Czedli, Gabor
    Schmidt, E. Tamas
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02): : 689 - 721
  • [24] Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices
    G. Grätzer
    Algebra universalis, 2013, 69 : 301 - 304
  • [25] Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices
    Graetzer, G.
    ALGEBRA UNIVERSALIS, 2013, 69 (04) : 301 - 304
  • [26] The Matrix of a Slim Semimodular Lattice
    Gábor Czédli
    Order, 2012, 29 : 85 - 103
  • [27] C1-diagrams of slim rectangular semimodular lattices permit quotient diagrams
    Czedli, Gabor
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (1-2): : 1 - 40
  • [28] The Matrix of a Slim Semimodular Lattice
    Czedli, Gabor
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (01): : 85 - 103
  • [29] Semimodular λ-lattices
    Chajda, Ivan
    Langer, Helmut
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2022, 39 (01) : 79 - 96
  • [30] The Jordan-Holder theorem with uniqueness for groups and semimodular lattices
    Czedli, Gabor
    Schmidt, E. Tamas
    ALGEBRA UNIVERSALIS, 2011, 66 (1-2) : 69 - 79