A Class of Alternating Segment Crank–Nicolson Methods for Solving Convection-Diffusion Equations

被引:4
作者
Wenqia Wang
机构
[1] Shandong University,Department of Mathematics
来源
Computing | 2004年 / 73卷
关键词
Convection-diffusion equation; parallel computing; Crank; Nicolson scheme; asymmetric difference scheme; alternating segment method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a class of Alternating Segment Crank–Nicolson (ASC-N) method for the convection-diffusion equation. The method is unconditionally stable and has the advantages of parallel computing. The numerical examples show that the accuracy of the method is better than that of the existing method in [4].
引用
收藏
页码:41 / 55
页数:14
相关论文
共 50 条
[41]   Generalized trapezoidal formulas for convection-diffusion equations [J].
Chawla, MM ;
Al-Zanaidi, MA ;
Evans, DJ .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (02) :141-154
[42]   A posteriori Variational Multiscale Methods for the 1D convection-diffusion equations [J].
Rebollo, Tomas Chacon ;
Dominguez-Delgado, Antonio ;
GomezMarmol, Andmacarena .
COMPTES RENDUS MECANIQUE, 2023, 351 :293-305
[43]   Relaxation method for unsteady convection-diffusion equations [J].
Shen, Wensheng ;
Zhang, Changjiang ;
Zhang, Jun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :908-920
[44]   A decomposition method for solving unsteady convection-diffusion problems [J].
Momani, Shaher .
TURKISH JOURNAL OF MATHEMATICS, 2008, 32 (01) :51-60
[45]   Convergence analysis of the multiscale method for a class of convection-diffusion equations with highly oscillating coefficients [J].
Deng, Weibing ;
Yun, Xulai ;
Xie, Chunhong .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (07) :1549-1567
[46]   Exponential difference schemes for solving boundary-value problems for convection-diffusion type equations [J].
Polyakov S.V. ;
Karamzin Y.N. ;
Kudryashova T.A. ;
Tsybulin I.V. .
Mathematical Models and Computer Simulations, 2017, 9 (1) :71-82
[47]   A new parallel difference algorithm based on improved alternating segment Crank-Nicolson scheme for time fractional reaction-diffusion equation [J].
Yang, Xiaozhong ;
Dang, Xu .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[48]   Modified age methods for the convection-diffusion equation [J].
Lu, JF ;
Zhang, BL ;
Zuo, FL .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1998, 14 (01) :65-75
[49]   Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations [J].
Geiser, Jurgen ;
Martinez, Eulalia ;
Hueso, Jose L. .
MATHEMATICS, 2020, 8 (11) :1-42
[50]   Residual-minimizing Krylov subspace methods for stabilized discretizations of convection-diffusion equations [J].
Ernst, OG .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1079-1101