Twisted Lie Group C*-Algebras as Strict Quantization

被引:0
|
作者
N. P. Landsman
机构
[1] University of Amsterdam,Korteweg de Varies Institute for Mathematics
来源
Letters in Mathematical Physics | 1998年 / 46卷
关键词
quantization; C*-algebras; Poisson manifolds.;
D O I
暂无
中图分类号
学科分类号
摘要
A nonzero 2-cocycle Γ∈ Z2(g, R) on the Lie algebra g of a compact Lie group G defines a twisted version of the Lie–Poisson structure on the dual Lie algebra g*, leading to a Poisson algebra C∞ (g*(Γ)). Similarly, a multiplier c∈ Z2(G, U(1)) on G which is smooth near the identity defines a twist in the convolution product on G, encoded by the twisted group C-algebra C*(G,c). Further to some superficial yet enlightening analogies between C∞ (g*(Γ)) and C*(G,c), it is shown that the latter is a strict quantization of the former, where Planck’s constant ħ assumes values in (Z\{0})-1. This means that there exists a continuous field of C*-algebras, indexed by ħ ∈ 0 ∪ (Z\{0})-1, for which A0= C0(g*) and Aħ=C*(G,c) for ħ ≠ 0, along with a cross-section of the field satisfying Dirac’s condition asymptotically relating the commutator in Aħ to the Poisson bracket on C∞(g*(Γ)). Note that the ‘quantization’ of ħ does not occur for Γ=0.
引用
收藏
页码:181 / 188
页数:7
相关论文
共 50 条
  • [1] Twisted Lie group C*-algebras as strict quantizations
    Landsman, NP
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (02) : 181 - 188
  • [2] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    Cheng Yongsheng
    Su Yucai
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1134 - 1142
  • [3] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    程永胜
    苏育才
    Acta Mathematica Scientia, 2010, 30 (04) : 1134 - 1142
  • [4] QUANTIZATION OF HAMILTONIAN-TYPE LIE ALGEBRAS
    Song, Guang'Ai
    Su, Yucai
    Xin, Bin
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 240 (02) : 371 - 381
  • [5] Quantization of Lie Algebras of Generalized Weyl Type
    Yue, Xiaoqing
    Jiang, Qifen
    Xin, Bin
    ALGEBRA COLLOQUIUM, 2009, 16 (03) : 437 - 448
  • [6] A deformation quantization procedure for C*-algebras
    Nagy, G
    JOURNAL OF OPERATOR THEORY, 2000, 44 (02) : 369 - 411
  • [7] Quantization of Lie bialgebras, Part V: Quantum vertex operator algebras
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 2000, 6 (1) : 105 - 130
  • [8] Quantization of Lie bialgebras, II
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 213 - 231
  • [9] Quantization of Lie bialgebras, III
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 233 - 269
  • [10] Quantization of inhomogeneous Lie bialgebras
    Kulish, PP
    Mudrov, AI
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 64 - 77