A New Approach on the Approximate Controllability Results for Hilfer Fractional Stochastic Hemivariational Inequalities of Order 1<μ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\mu <2$$\end{document}

被引:0
作者
J. Pradeesh [1 ]
V. Vijayakumar [1 ]
机构
[1] Vellore Institute of Technology,Department of Mathematics School of Advanced Sciences
关键词
Approximate controllability; Hemivariational inequality; Hilfer fractional derivative; Generalized Clarke subdifferential; Stochastic process; 26A33; 47H10; 58E35; 93B05; 93E03;
D O I
10.1007/s12346-024-01012-0
中图分类号
学科分类号
摘要
In this paper, we investigate the approximate controllability for Hilfer fractional stochastic hemivariational inequalities of order 1<μ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\mu <2$$\end{document} in Hilbert spaces. Initially, we define the concept of a mild solution for our problem in terms of fractional calculus, cosine families, stochastic analysis, and generalized Clarke subdifferential. Then, the existence and approximate controllability for Hilfer fractional stochastic evolution hemivariational inequalities are formulated and proven under appropriate conditions using fixed point theorems for multivalued maps. Finally, an example is presented to illustrate the theory.
引用
收藏
相关论文
共 159 条
[1]  
Ahmed HM(2020)Neutral fractional stochastic partial differential equations with Clarke subdifferential Appl. Anal. 100 3220-3232
[2]  
El-Owaidy HM(2014)Numerical controllability of fractional dynamical systems Optimization 63 1267-1279
[3]  
AL-Nahhas MA(2013)Controllability of nonlinear higher order fractional dynamical systems Nonlinear Dyn. 71 605-612
[4]  
Balachandran K(2013)Controllability results for nonlinear fractional order dynamical systems J. Optim. Theory Appl. 156 33-44
[5]  
Govindaraj V(2015)Controllability of fractional damped dynamical systems Appl. Math. Comput. 257 66-73
[6]  
Balachandran K(2015)Results for Mild solution of fractional coupled hybrid boundary value problems Open Math. 13 601-608
[7]  
Govindaraj V(2015)On the exact solution of wave equations on cantor sets Entropy 17 6229-6237
[8]  
Rodriguez-Germa L(1999)On Concepts of controllability for deterministic and stochastic systems SIAM J. Control Optim. 37 1808-1821
[9]  
Trujillo JJ(2023)New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalities of order $r\in (1,2)$ Commun. Nonlinear Sci. Numer. Simul. 116 1616-1626
[10]  
Balachandran K(2012)Existence and uniqueness for a problem involving Hilfer fractional derivative Comput. Math. Appl. 64 537-562