Nonlinear difference equations with asymptotically stable solutions

被引:0
作者
V. E. Slyusarchuk
机构
关键词
Banach Space; Difference Equation; Asymptotic Stability; Trivial Solution; Spectral Radius;
D O I
10.1007/BF02528754
中图分类号
学科分类号
摘要
We establish conditions of asymptotic stability for all solutions of the equation Xn+1=F(Xn), n≥0, in the Banach space E in the case where r(F′(x))<1 ∀ x ∈ E, r′(x) is the spectral radius of F′(x). An example of an equation with an unstable solution is given.
引用
收藏
页码:1089 / 1101
页数:12
相关论文
共 5 条
  • [1] Slyusarchuk V. E.(1976)Difference equations in a Banach space Latv. Mat. Ezhegodnik 17 214-229
  • [2] Tsar'kov E. F.(1983)New theorems on the instability of difference systems with respect to the first approximation Differents. Uravn. 19 906-908
  • [3] Slyusarchuk V. E.(1986)On the instability of difference equations with respect to the first approximation Differents. Uravn. 22 722-723
  • [4] Slyusarchuk V. E.(1980)Universal behavior in nonlinear systems Los Alamos Science 1 4-27
  • [5] Feigenbaum M. J.(undefined)undefined undefined undefined undefined-undefined