Transformations that minimize the Gini index of a random variable and applications

被引:0
作者
Michael McAsey
Libin Mou
机构
[1] Bradley University,Department of Mathematics
来源
The Journal of Economic Inequality | 2022年 / 20卷
关键词
Gini index; Minimization; Equitable taxation;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous or discrete random variable with values in [0,M] and consider all functions (here called transformations) q:[0,M]→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q:[0,M]\to [0,\infty )$\end{document} that are increasing and have given bounded rates B≤q(v)−q(u)v−u≤A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \le \frac {q(v)-q(u)}{v-u} \le A$\end{document} for u < v. We prove that among such transformations, there is a transformation q that minimizes the Gini index of q(X), and such a q can be chosen as piecewise linear with only two rates, namely A and B. In the motivation for the study, X represents the incomes of a population. Our results imply that among all such tax policies with fixed allowable minimum and maximum tax rates, there is a tax policy that minimizes the Gini index of the disposable incomes of the population and such a tax policy has only two brackets with the given minimum and maximum rates.
引用
收藏
页码:483 / 502
页数:19
相关论文
共 23 条
  • [1] Artstein Z(1980)Discrete and continuous bang-bang and facial spaces or: Look for the extreme points SIAM Rev. 22 172-185
  • [2] Atkinson AB(1970)On the measurement of inequality J. Econom. Theory 2 244-263
  • [3] Carbonell-Nicolau O(2018)Inequality reducing properties of progressive income tax schedules: The case of endogenous income Theor. Econ. 13 39-60
  • [4] Llavador H(2010)The Gini index and measures of inequality Amer. Math. Monthly 117 851-864
  • [5] Farris FA(1976)The effect of transformations on Lorenz curves Econometrica 44 823-824
  • [6] Fellman J(2001)Mathematical properties of classes of income redistributive properties Eur. J. Polit. Econ. 17 179-192
  • [7] Fellman J(2012)Properties of Lorenz curves for transformed income distributions Theor. Econ. Lett. 2 487-493
  • [8] Fellman J(2013)Properties of non-differentiable tax policies Theor. Econ. Lett. 3 142-145
  • [9] Fellman J(1999)Optimal tax-transfer systems and redistributive policy Scand. J. Econ. 101 115-126
  • [10] Fellman J(2012)A note on generalized inverses of distribution function and quantile transformation Appl. Math. 3 2098-2100