Atomic characterizations of variable Hardy spaces on domains and their applications

被引:0
作者
Xiong Liu
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Variable Hardy space; Atom; Maximal function; Variable BMO space; Duality; Domain; 42B30; 42B25; 46A20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} be a proper open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} and p(·):Ω→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\varOmega \rightarrow (0,\infty )$$\end{document} a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the variable Hardy space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} by the radial maximal function and then characterize the space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} via grand maximal functions and atoms. Moreover, the author introduces the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space BMOp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega )$$\end{document} and the variable Hölder space Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. As applications of atomic characterizations of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}, the author shows that Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} is the dual space of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}. In particular, when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a bounded Lipschitz domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, the author further obtains Hp(·)(Ω)=Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )=H^{p(\cdot )}_{r}(\varOmega )$$\end{document}, BMOp(·)(Ω)=BMOzp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega ) =\rm {BMO}^{p(\cdot )}_z(\varOmega )$$\end{document} and Λp(·),q,0(Ω)=Λzp(·),q,0(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,0}(\varOmega )=\varLambda ^{p(\cdot ),\,q,\,0}_z(\varOmega )$$\end{document} with equivalent (quasi-)norm. Here the variable Hardy space Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}_{r}(\varOmega )$$\end{document} is defined via restricting arbitrary elements of Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, BMOzp(·)(Ω):={f∈BMOp(·)(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}_z(\varOmega ):=\{f\in \rm {BMO}^{p(\cdot )}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document} and Λzp(·),q,d(Ω):={f∈Λp(·),q,d(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}_z(\varOmega ): =\{f\in \varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document}, where Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document}, BMOp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} and Λp(·),q,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n)$$\end{document}, respectively, denote the variable Hardy space, the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space and the variable Hölder space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, and Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\varOmega }}$$\end{document} denotes the closure of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. The above results extend the main results in Miyachi (Studia Math 95:205–228, 1990) to the case of variable exponents.
引用
收藏
相关论文
共 50 条
  • [41] Variable martingale Hardy spaces and their applications in Fourier analysis
    Jiao, Yong
    Weisz, Ferenc
    Wu, Lian
    Zhou, Dejian
    DISSERTATIONES MATHEMATICAE, 2020, (550) : 1 - 67
  • [42] Dual Spaces of Anisotropic Variable Hardy-Lorentz Spaces and Their Applications
    Liu, Jun
    Lu, Yaqian
    Huang, Long
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (02) : 913 - 942
  • [43] Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions
    Zhang, Yangyang
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (06)
  • [44] New variable martingale Hardy spaces
    Jiao, Yong
    Zeng, Dan
    Zhou, Dejian
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (02) : 450 - 478
  • [45] Atomic decompositions of martingale Hardy Lorentz amalgam spaces and applications
    Li, L.
    Wang, Y.
    Yang, A.
    ACTA MATHEMATICA HUNGARICA, 2024, 172 (02) : 422 - 444
  • [46] Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type
    Fu, Xing
    Yang, Dachun
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 44 (01) : 1 - 37
  • [47] THE HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT AND THEIR APPLICATIONS
    Wang, Hongbin
    Liu, Zongguang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (04): : 1363 - 1389
  • [48] THE FOURIER TRANSFORM OF ANISOTROPIC HARDY SPACES WITH VARIABLE EXPONENTS AND THEIR APPLICATIONS
    Wang, Wenhua
    Wang, Aiting
    OPERATORS AND MATRICES, 2022, 16 (02): : 513 - 528
  • [49] Herz-Morrey-Hardy Spaces with Variable Exponents and Their Applications
    Xu, Jingshi
    Yang, Xiaodi
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [50] VARIABLE ANISOTROPIC HERZ-MORREY-HARDY SPACES AND THEIR APPLICATIONS
    Ang, Aiting
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (01): : 1 - 24