Atomic characterizations of variable Hardy spaces on domains and their applications

被引:0
作者
Xiong Liu
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Variable Hardy space; Atom; Maximal function; Variable BMO space; Duality; Domain; 42B30; 42B25; 46A20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} be a proper open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} and p(·):Ω→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\varOmega \rightarrow (0,\infty )$$\end{document} a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the variable Hardy space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} by the radial maximal function and then characterize the space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} via grand maximal functions and atoms. Moreover, the author introduces the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space BMOp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega )$$\end{document} and the variable Hölder space Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. As applications of atomic characterizations of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}, the author shows that Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} is the dual space of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}. In particular, when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a bounded Lipschitz domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, the author further obtains Hp(·)(Ω)=Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )=H^{p(\cdot )}_{r}(\varOmega )$$\end{document}, BMOp(·)(Ω)=BMOzp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega ) =\rm {BMO}^{p(\cdot )}_z(\varOmega )$$\end{document} and Λp(·),q,0(Ω)=Λzp(·),q,0(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,0}(\varOmega )=\varLambda ^{p(\cdot ),\,q,\,0}_z(\varOmega )$$\end{document} with equivalent (quasi-)norm. Here the variable Hardy space Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}_{r}(\varOmega )$$\end{document} is defined via restricting arbitrary elements of Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, BMOzp(·)(Ω):={f∈BMOp(·)(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}_z(\varOmega ):=\{f\in \rm {BMO}^{p(\cdot )}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document} and Λzp(·),q,d(Ω):={f∈Λp(·),q,d(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}_z(\varOmega ): =\{f\in \varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document}, where Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document}, BMOp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} and Λp(·),q,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n)$$\end{document}, respectively, denote the variable Hardy space, the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space and the variable Hölder space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, and Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\varOmega }}$$\end{document} denotes the closure of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. The above results extend the main results in Miyachi (Studia Math 95:205–228, 1990) to the case of variable exponents.
引用
收藏
相关论文
共 50 条
  • [31] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    Fan XingYa
    He JianXun
    Li BaoDe
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2093 - 2154
  • [32] REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (06) : 3033 - 3082
  • [33] REAL-VARIABLE CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BESSEL OPERATORS
    Yang, Dachun
    Yang, Dongyong
    ANALYSIS AND APPLICATIONS, 2011, 9 (03) : 345 - 368
  • [34] Dual Spaces of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications
    Jun Liu
    Yaqian Lu
    Long Huang
    Fractional Calculus and Applied Analysis, 2023, 26 : 913 - 942
  • [35] Maximal Function Characterizations of Hardy Spaces on Rn with Pointwise Variable Anisotropy
    Wang, Aiting
    Wang, Wenhua
    Li, Baode
    MATHEMATICS, 2021, 9 (24)
  • [36] Duality for Hardy Spaces in Domains of Cn and Some Applications
    Aizenberg, Lev
    Gotlib, Victor
    Vidras, Alekos
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1341 - 1366
  • [37] Variable Hardy spaces associated with Schrödinger operators on strongly Lipschitz domains with their applications to regularity for inhomogeneous Dirichlet problems
    Xiong Liu
    Dachun Yang
    Sibei Yang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 925 - 957
  • [38] Variable Hardy Spaces on Non-tangentially Accessible Domains and Their Applications to Div-Curl Lemma
    Liu, Xiong
    Sun, Chunyou
    Yang, Sibei
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
  • [39] Variable Hardy Spaces on Non-tangentially Accessible Domains and Their Applications to Div-Curl Lemma
    Xiong Liu
    Chunyou Sun
    Sibei Yang
    The Journal of Geometric Analysis, 2022, 32
  • [40] REAL-VARIABLE CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Fu, Xing
    Ma, Tao
    Yang, Dachun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 343 - 410