The Gibbs distribution universally characterizes states of thermal equilibrium. In order to extend the Gibbs distribution to non-equilibrium steady states, one must relate the self-information I(x)=−log(Pss(x))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{{{{{\mathcal{I}}}}}}}}(x)=-\!\log ({P}_{{{{{{{{\rm{ss}}}}}}}}}(x))$$\end{document} of microstate x to measurable physical quantities. This is a central problem in non-equilibrium statistical physics. By considering open systems described by stochastic dynamics which become deterministic in the macroscopic limit, we show that changes ΔI=I(xt)−I(x0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Delta }}{{{{{{{\mathcal{I}}}}}}}}={{{{{{{\mathcal{I}}}}}}}}({x}_{t})-{{{{{{{\mathcal{I}}}}}}}}({x}_{0})$$\end{document} in steady state self-information along deterministic trajectories can be bounded by the macroscopic entropy production Σ. This bound takes the form of an emergent second law Σ+kbΔI≥0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Sigma }}+{k}_{b}{{\Delta }}{{{{{{{\mathcal{I}}}}}}}}\,\ge \,0$$\end{document}, which contains the usual second law Σ ≥ 0 as a corollary, and is saturated in the linear regime close to equilibrium. We thus obtain a tighter version of the second law of thermodynamics that provides a link between the deterministic relaxation of a system and the non-equilibrium fluctuations at steady state. In addition to its fundamental value, our result leads to novel methods for computing non-equilibrium distributions, providing a deterministic alternative to Gillespie simulations or spectral methods.