On the rate of convergence and asymptotic expansions for U-statistics under alternatives

被引:0
作者
Bening V.E. [1 ]
机构
[1] Department of Computational Mathematics and Cybernetics, Moscow State University, vorob'Yovy Gory
关键词
Distribution Function; Asymptotic Expansion; Stochastic Model; Asymptotic Distribution; Decision Theory;
D O I
10.1007/BF02673715
中图分类号
学科分类号
摘要
In this paper, we consider asymptotic expansions and the rate of convergence for the distribution function of asymptotically efficient U-statistics under alternatives in the one-sample problem. Section 1 is an introduction. Section S contains the theorem concerning the rate of convergence for U-statistics; in Sec. 3, we formulate sets of sufficient conditions under which Edgeworth-type asymptotic expansions for U-statistics under alternatives will be constructed (see Theorem 2). Finally, these theorems are proved in Sec. 4. © 2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:1403 / 1407
页数:4
相关论文
共 12 条
[1]  
Bening V.E., On the rate of convergence of L- And R-statistics under alternatives, J. Math. Sci., 76, 2, pp. 2227-2240, (1995)
[2]  
Bening V.E., Asymptotic expansions for L- And R-statistics under alternatives, J. Math. Sci., 76, 1, pp. 2094-2109, (1995)
[3]  
Bening V.E., A method for obtaining asymptotic expansions under alternatives based on the properties of the likelihood ratio, J. Math. Sci., 88, 6, pp. 704-777, (1998)
[4]  
Bickel P.J., Edgeworth expansions in nonparametric statistics, Ann. Statist., 2, pp. 1-20, (1974)
[5]  
Bickel P.J., Goetze F., Van Zwet W.R., The Edgeworth expansion for U-statistics of degree two, Ann. Statist., 14, 4, pp. 1403-1484, (1980)
[6]  
Callaert H., Janssen P., The Berry-Esseen theorem for U-statistics, Ann. Statist., 6, pp. 417-421, (1978)
[7]  
Callaert H., Janssen P., Veraverbeke N., An Edgeworth expansion for U-statistics, Ann. Statist., 8, pp. 299-312, (1980)
[8]  
Chan Y.K., Wierman J., On the Berry-Esseen theorem for U-statistics, Ann. Probab., 5, pp. 130-139, (1977)
[9]  
Chibisov D.M., Van Zwet W.R., On the Edgeworth expansion for the logarithm of the likelihood ratio. i, Teor. Veroyatn. Primen., 29, 3, pp. 417-439, (1984)
[10]  
Helmers R., Van Zwet W.R., The Berry-Esseen bound for U-statistics, Statistical Decision Theory and Related Topics, 1, pp. 497-512, (1982)