Stability and convergence of the space fractional variable-order Schrödinger equation

被引:0
作者
Abdon Atangana
Alain H Cloot
机构
[1] University of the Free State,Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences
[2] University of the Free State,Department of Mathematics and Applied Mathematics
来源
Advances in Difference Equations | / 2013卷
关键词
Schrödinger equation; variable-order derivative; Crank-Nicholson scheme; convergence; stability;
D O I
暂无
中图分类号
学科分类号
摘要
The space fractional Schrödinger equation was further extended to the concept of space fractional variable-order derivative. The generalized equation is very difficult to handle analytically. We solved the generalized equation numerically via the Crank-Nicholson scheme. The stability and the convergence of the space fractional variable-order Schrödinger equation were presented in detail.
引用
收藏
相关论文
共 50 条
[31]   Optimal order finite difference local discontinuous Galerkin method for variable-order time-fractional diffusion equation [J].
Wei, Leilei ;
Yang, Yanfang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
[32]   New solvability and stability results for variable-order fractional initial value problem [J].
Abdelhamid, H. ;
Souid, M. S. ;
Alzabut, J. .
JOURNAL OF ANALYSIS, 2024, 32 (03) :1877-1893
[33]   On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation [J].
Asadzadeh, Mohammad ;
Zouraris, Georgios E. .
STUDIES IN APPLIED MATHEMATICS, 2024, 153 (03)
[34]   Stability of Caputo-Type Fractional Variable-Order Biquadratic Difference Equations [J].
Brandibur, Oana ;
Kaslik, Eva ;
Mozyrska, Dorota ;
Wyrwas, Malgorzata .
NEW TRENDS IN NONLINEAR DYNAMICS, VOL III: PROCEEDINGS OF THE FIRST INTERNATIONAL NONLINEAR DYNAMICS CONFERENCE (NODYCON 2019), 2020, :295-303
[35]   Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation [J].
Wei, Leilei ;
Wang, Huanhuan .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 :685-698
[36]   PREDICTIVE CONTROL OF THE VARIABLE-ORDER FRACTIONAL CHAOTIC ECOLOGICAL SYSTEM [J].
Wang, Bo ;
Sajjadi, Samaneh Sadat ;
Jahanshahi, Hadi ;
Karaca, Yeliz ;
Hou, Dingkun ;
Pi, Li ;
Xia, Wei-Feng ;
Aly, Ayman A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
[37]   Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order [J].
Qu, Hai-Dong ;
Liu, Xuan ;
Lu, Xin ;
Rahman, Mati Ur ;
She, Zi-Hang .
CHAOS SOLITONS & FRACTALS, 2022, 156
[38]   Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation [J].
A. H. Bhrawy ;
M. A. Zaky .
Nonlinear Dynamics, 2015, 80 :101-116
[39]   An efficient algorithm for solving the variable-order time-fractional generalized Burgers' equation [J].
Rawani, Mukesh Kumar ;
Verma, Amit Kumar ;
Cattani, Carlo .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) :5269-5291
[40]   Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :101-116