Numerical Solution of an Axisymmetric Eddy Current Model with Current and Voltage Excitations

被引:0
作者
A. Bermúdez
B. López-Rodríguez
F. J. Pena
R. Rodríguez
P. Salgado
P. Venegas
机构
[1] Universidade de Santiago de Compostela,Departamento de Matemática Aplicada and Centro de Investigación y Tecnología Matemática de Galicia (CITMAga)
[2] Universidad Nacional de Colombia,Escuela de Matemáticas
[3] Universidad de Concepción,CI2MA, Departamento de Ingeniería Matemática
[4] Universidad del Bío-Bío,GIMNAP, Departamento de Matemática
来源
Journal of Scientific Computing | 2022年 / 91卷
关键词
Axisymmetric problem; Eddy-current model; Finite elements; Error estimates; 65N30; 78A55; 78M10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the numerical approximation of an axisymmetric time-harmonic eddy current problem involving an in-plane current. The analysis of the problem restricts to the conductor. The source of the problem is given in terms of boundary data currents and/or voltage drops defined in the so-called electric ports, which are parts of the boundary connected to exterior sources. This leads to an elliptic problem written in terms of the magnetic field with nonlocal boundary conditions. First, we prove the existence and uniqueness of the solution for a weak formulation written in terms of Sobolev spaces with appropriate weights. We show that the magnetic field is not the most appropriate variable to impose the boundary conditions when Lagrangian finite elements are used to discretize the problem. We propose an alternative weak formulation of the problem which allows us to avoid this drawback. We compute the numerical solution of the problem by using Lagrangian finite elements ad hoc modified on the vicinity of the symmetry axis. We provide a convergence result under rather general conditions. Moreover, we prove quasi-optimal order error estimates under additional regularity assumptions. Finally, we report numerical results which allow us to confirm the theoretical estimates and to assess the performance of the proposed method in a physical application which is the motivation of this paper: the computation of the current density distribution in a steel cylindrical bar submitted to electric-upsetting.
引用
收藏
相关论文
共 63 条
[1]  
Bermúdez A(2003)A numerical method for transient simulation of metallurgical compound electrodes Finite Elem. Anal. Des. 39 283-299
[2]  
Bullón J(2017)Numerical simulation of magnetization and demagnetization processes IEEE T. Magn. 53 1-6
[3]  
Pena F(2015)Numerical analysis of a transient non-linear axisymmetric eddy current model Comput. Math. Appl. 70 1984-2005
[4]  
Salgado P(2013)Numerical solution of a transient nonlinear axisymmetric eddy current model with nonlocal boundary conditions Math. Models Methods Appl. Sci. 23 2495-2521
[5]  
Bermúdez A(2013)Existence of a solution for a thermoelectric model with several phase changes and a Carathéodory thermal conductivity Nonlinear Anal. Real World Appl. 14 2212-2230
[6]  
Gómez D(2010)Numerical analysis of a finite-element method for the axisymmetric eddy current model of an induction furnace IMA J. Numer. Anal. 30 654-676
[7]  
Piñeiro M(2005)Numerical treatment of realistic boundary conditions for the eddy current problem in an electrode via Lagrange multipliers Math. Comp. 74 123-151
[8]  
Salgado P(2002)On traces for H(curl, J. Math. Anal. Appl. 276 845-867
[9]  
Venegas P(1997)) in Lipschitz domains IEEE T. Magn. 33 739-745
[10]  
Bermúdez A(2006)Numerical modeling in induction heating for axisymmetric geometries Numer. Linear Algebra Appl. 13 733-752